Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Solehudin
"Dalam beberapa dekade, akuisisi MT biasanya dilakukan dalam bentuk profil lintasan 2D. Namun pemodelan inversi 2D memiliki kekurangan terutama terkait dengan keberadaan struktur yang lebih kompleks 3D strike . Ambiguitas ini termasuk dalam pemilihan mode yang digunakan TE atau TM . Ambiguitas ini dapat menyebabkan kesalahan dalam interpretasi. Ambiguitas data seperti yang terjadi pada inversi 2D dapat diatasi dengan menggunakan program inversi 3D.Inversi MT 3D dilakukan dengan menggunakan dengan menggunakan perangkat lunak Mod3DEM dengan algoritma NLCG Non Linear Conjugate Gradient dan sudah memasukkan faktor topografi. Data input yang digunakan dalam inversi 3D adalah sebanyak 92 titik, dengan range frekuensi 320 ndash; 0.01 Hz. Pengolahan data menggunakan rotasi principal axis dan koreksi statik menggunakan data TDEM. Selain itu, data pendukung lain yang digunakan dalam penelitian ini adalah data geokimia dan data geologi.
Berdasarkan hasil inversi 3D MT, Karakteristik sistem geothermal lapangan ldquo;INARA rdquo; terlihat dengan batuan penudung memiliki resestivitas rendah 80 ohm-m. Top of reservoir berada di ketinggian 500 meter dari MSL dengan heat source berada di bawah puncak gunung WL. Dari hasil perhitungan geothermometer silika dan diagram entalphy-Cloride mixing, diperoleh temperatur reservoir daerah prospek panas bumi ldquo;INARA rdquo; adalah 200 oC. Sedangkan berdasarkan geothermometer CO2, temperatur reservoir daerah prospek panas bumi ldquo;INARA rdquo; adalah 260 oC dan masuk dalam kategori high temperature >225 oC.

Within a few decades, MT acquisition is used to be done in a 2D track profile. However 2D inversion modeling has its drawbacks mainly related to the existence of the existence of complex structures 3D strike . This will bring ambiguity that can lead to errors in interpretation. Data ambiguity as occurs in 2D inversion can be overcome by using 3D inversion program.The software used in MT 3D Inversion is Mod3DEM with NLCG Non Linear Conjugate Gradient algorithm and has included topography factor. The input data used in 3D inversion is 92 points, with frequency range 320 0.01 Hz. The data processing used principal axis rotation and static corrected by TDEM data. The other supporting data used in this study are geochemical data and geological data.
Based on the 3D MT inversion results, the characteristics of the INARA geothermal field system are seen with low residence rocks 80 ohm m. Top of the reservoir is at an altitude of 500 meters from MSL with the heat source is under the peak of WL mountain. From the calculation of silica geothermometer and entalphy cloride mixing diagram, it is known the reservoir temperature of geothermal prospect region INARA is 200 oC. While based on CO2 geothermometer, the reservoir temperature of geothermal prospect region INARA is 260 oC and included in high temperature 225 oC.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T48702
UI - Tesis Membership  Universitas Indonesia Library
cover
Agus Sulistyo
"Metode magnetotelluric (MT) merupakan metode yang efektif dalam memetakan kondisi bawah permukaan. Pada data MT, sering ditemukan adanya pergeseran statik yang disebabkan oleh beberapa hal, antara lain adalah heterogenitas di dekat permukaan, efek topografi ataupun kontak vertikal. Jika hal ini dibiarkan, maka akan menyebabkan kesalahan interpretasi pada resistivitas dan kedalaman. Untuk mengatasi fenomena ini dapat dilakukan dengan menggunakan data Time Domain Electromagnetic (TDEM). Namun hal itu harus dilakukan dengan menggunakan peralatan yang mahal dan akan menghabiskan waktu dan biaya operasional yang besar.
Untuk mengatasi hal tersebut, upaya pemecahan masalah pergeseran statik terus dikembangkan antara lain dengan metode Complex Kriging (Cokriging), Perata-rataan (averaging), atau dengan menggunakan geomagnetic transfer function. Penelitian ini difokuskan pada pemecahan masalah pergeseran statik dengan membuat software berbasis Matlab menggunakan metode Cokriging dan Peratarataan. Pengujian kedua metode tersebut dilakukan dengan menggunakan data sintetik dan data riil. Dari kedua metode tersebut didapat kesimpulan bahwa metode Perata-rataan memberikan hasil yang lebih baik.
......Magnetotelluric method (MT) is an effective method to map the subsurface conditions. In the MT data, often found the existence of static shift can be caused by several things, among others, is the heterogeneity near the surface, the effect of topography or vertical contacts. If this is allowed, it will cause errors of interpretation in resistivity and depth. To overcome this phenomenon can be done using data Time Domain Electromagnetic (TDEM). But it must be done by using expensive equipment and will spend the time and operational costs are great.
To overcome this, the static shift problem solving efforts continue to be developed include the method of Complex Kriging (Cokriging), Averaging, or by using geomagnetic transfer function. This study focused on problems solving of static shift by creating software based Matlab using Cokriging and Averaging. Testing the two methods are conducted using synthetic data and real data. Of the two methods could be concluded that the Averaging method gives better results."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S1152
UI - Skripsi Open  Universitas Indonesia Library
cover
Deni Saputra
"[Daerah prospek panas bumi Gunung Arjuno dan Gunung Welirang berada pada jalur vulkanik yang dikenal dengan jalur ring of fire, yaitu rentetan gunung api, baik yang aktif, maupun gunung api yang tidak aktif. Gunung tersebut berasosiasi
dengan pembentukan sistem panas bumi yang ditandai dengan kemunculan manifestasi yang terdiri dari mata air panas Padusan, Coban dan Cangar serta adanya fumarol yang terdapat di komplek Gunung Welirang. Dari hasil perhitungan geothermometer daerah prospek panas bumi Gunung Arjuno dan
Gunung Welirang memiliki temperatur 250o C dan masuk dalam kategori high temperature (>225 oC). Untuk mengetahui batas, kedalaman, dan geometri dari reservoir yang ada, dilakukan pengukuran dengan metode Magnetotellurik (MT), Time Domain Electromagnetic (TDEM) dan gaya berat. Dari hasil pengukuran
tersebut, dilakukan pemodelan pada 138 data MT, 103 data TDEM dan 253 data gaya berat. Selanjutnya hasil pemodelan dianalisa dengan menggunakan penampang 1 dimensi, 2 dimensi dan visualisasi 3 dimensi. Karakteristik reservoir berada pada kisaran 10-30 Ohm-m dengan nilai densitas rata-rata 2.2
gr/cc dan menghasilkan prospek panas Gunung Arjuno dan Gunung Welirang sekitar 40 km2 dengan potensi yang dapat dikembangkan untuk pembangkit tenaga listrik sebesar 140 MWe, rekomendasi penentuan titik bor eksplorasi berada di 2 km baratlaut dari komplek Gunung Welirang.
......The geothermal prospect areas Mount Arjuno and Mount Welirang is on track which is known as volcanic ring of fire, which is a series of volcanoes, both active and inactive volcanoes. The mountain is associated with the formation of geothermal systems that are characterized by the appearance of manifestations consisting of Padusan, Coban and Cangar hot springs and their fumaroles located
in Mount Welirang complex. From the calculation geothermometer, the geothermal prospect areas Mount Arjuno and Welirang has a temperature of 250°C and in the category of high temperature (190 oC-236 oC). To determine the
boundary, the depth, and the geometry of the existing reservoir, measured by the method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and gravity. From the results of these measurements, modeling performed on the 138
MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results were analyzed using 1 dimensional cross-section, 2 dimensional and 3 dimensional visualization. The position of the reservoir is in the range of 10-30 Ohm-m with an average density value 2.2 g/CC3 to generate hot prospects Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed for power plants of 140 MWe, recommendations exploration drill point
determination located at 3km north-west of the mountain complex Mount Welirang.;The geothermal prospect areas Mount Arjuno and Mount Welirang is on track
which is known as volcanic ring of fire, which is a series of volcanoes, both active
and inactive volcanoes. The mountain is associated with the formation of
geothermal systems that are characterized by the appearance of manifestations
consisting of Padusan, Coban and Cangar hot springs and their fumaroles located
in Mount Welirang complex. From the calculation geothermometer, the
geothermal prospect areas Mount Arjuno and Welirang has a temperature of
250°C and in the category of high temperature (190 oC-236 oC). To determine the
boundary, the depth, and the geometry of the existing reservoir, measured by the
method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and
gravity. From the results of these measurements, modeling performed on the 138
MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results
were analyzed using 1 dimensional cross-section, 2 dimensional and 3
dimensional visualization. The position of the reservoir is in the range of 10-30
Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects
Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed
for power plants of 140 MWe, recommendations exploration drill point
determination located at 3km north-west of the mountain complex Mount
Welirang.;The geothermal prospect areas Mount Arjuno and Mount Welirang is on track
which is known as volcanic ring of fire, which is a series of volcanoes, both active
and inactive volcanoes. The mountain is associated with the formation of
geothermal systems that are characterized by the appearance of manifestations
consisting of Padusan, Coban and Cangar hot springs and their fumaroles located
in Mount Welirang complex. From the calculation geothermometer, the
geothermal prospect areas Mount Arjuno and Welirang has a temperature of
250°C and in the category of high temperature (190 oC-236 oC). To determine the
boundary, the depth, and the geometry of the existing reservoir, measured by the
method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and
gravity. From the results of these measurements, modeling performed on the 138
MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results
were analyzed using 1 dimensional cross-section, 2 dimensional and 3
dimensional visualization. The position of the reservoir is in the range of 10-30
Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects
Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed
for power plants of 140 MWe, recommendations exploration drill point
determination located at 3km north-west of the mountain complex Mount
Welirang.;The geothermal prospect areas Mount Arjuno and Mount Welirang is on track
which is known as volcanic ring of fire, which is a series of volcanoes, both active
and inactive volcanoes. The mountain is associated with the formation of
geothermal systems that are characterized by the appearance of manifestations
consisting of Padusan, Coban and Cangar hot springs and their fumaroles located
in Mount Welirang complex. From the calculation geothermometer, the
geothermal prospect areas Mount Arjuno and Welirang has a temperature of
250°C and in the category of high temperature (190 oC-236 oC). To determine the
boundary, the depth, and the geometry of the existing reservoir, measured by the
method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and
gravity. From the results of these measurements, modeling performed on the 138
MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results
were analyzed using 1 dimensional cross-section, 2 dimensional and 3
dimensional visualization. The position of the reservoir is in the range of 10-30
Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects
Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed
for power plants of 140 MWe, recommendations exploration drill point
determination located at 3km north-west of the mountain complex Mount
Welirang.;The geothermal prospect areas Mount Arjuno and Mount Welirang is on track
which is known as volcanic ring of fire, which is a series of volcanoes, both active
and inactive volcanoes. The mountain is associated with the formation of
geothermal systems that are characterized by the appearance of manifestations
consisting of Padusan, Coban and Cangar hot springs and their fumaroles located
in Mount Welirang complex. From the calculation geothermometer, the
geothermal prospect areas Mount Arjuno and Welirang has a temperature of
250°C and in the category of high temperature (190 oC-236 oC). To determine the
boundary, the depth, and the geometry of the existing reservoir, measured by the
method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and
gravity. From the results of these measurements, modeling performed on the 138
MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results
were analyzed using 1 dimensional cross-section, 2 dimensional and 3
dimensional visualization. The position of the reservoir is in the range of 10-30
Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects
Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed
for power plants of 140 MWe, recommendations exploration drill point
determination located at 3km north-west of the mountain complex Mount
Welirang., The geothermal prospect areas Mount Arjuno and Mount Welirang is on track
which is known as volcanic ring of fire, which is a series of volcanoes, both active
and inactive volcanoes. The mountain is associated with the formation of
geothermal systems that are characterized by the appearance of manifestations
consisting of Padusan, Coban and Cangar hot springs and their fumaroles located
in Mount Welirang complex. From the calculation geothermometer, the
geothermal prospect areas Mount Arjuno and Welirang has a temperature of
250°C and in the category of high temperature (190 oC-236 oC). To determine the
boundary, the depth, and the geometry of the existing reservoir, measured by the
method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and
gravity. From the results of these measurements, modeling performed on the 138
MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results
were analyzed using 1 dimensional cross-section, 2 dimensional and 3
dimensional visualization. The position of the reservoir is in the range of 10-30
Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects
Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed
for power plants of 140 MWe, recommendations exploration drill point
determination located at 3km north-west of the mountain complex Mount
Welirang.]"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T43401
UI - Tesis Membership  Universitas Indonesia Library