Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 1 dokumen yang sesuai dengan query
cover
Siahaan, Hilman Wisnu
"Data pelanggan merupakan salah satu data yang paling penting digunakan dalam OVO untuk menjalankan strategi dan mencapai visi perusahaan. Untuk itu dibutukan strategi yang baik dalam melakukan pengelolaan data pelanggan tersebut untuk mendapatkan kualitas data yang lebih baik. Penelitian ini dilakukan untuk mengukur tingkat kematangan pengelolaan kualitas data yang saat ini dilakukan dan memberikan strategi manajemen kualitas data berdasarkan kerangka kerja Loshin (2011) dan DAMA-DMBOK. Dari hasil pengukuran tingkat kematangan didapatkan bahwa secara umum pengelolaan data kualitas di OVO sudah berada di level 3 (defined) dengan beberapa dimensi masih berada pada level 2 (repeatable). Selanjutnya dilakukan analisis kesenjangan terhadap harapan yang kemudian menjadi input untuk menyusun strategi manajemen untuk meningkatkan kualitas data di OVO. Adapun rekomendasi strategi manajemen yang disarankan yaitu penggunaan dimensi kualitas data yang diselaraskan dengan hasil review business rules, implementasi single source of truth, membentuk dan menentukan data stewards, membentuk dewan pengawas kualitas data, melakukan sertifikasi sumber data yang terpercaya, memberikan partisipasi terhadap business partner dalam aktifitas DQM, membangun metrik kualitas data yang selaras dengan bisnis, menetapkan SLA, melakukan pemantauan aturan kualitas data, melakukan analisis dampak data, menyusun prosedur terkait DQM, melakukan pelaporan data quality scorecard secara rutin, menggunakan tools dalam pengecekan, menambahkan detail prosedur dalam pengawasan dengan metode otomatis, membangun aturan data yang selaras dengan bisnis, dan melakukan validasi data menggunakan aturan yang sudah didefenisikan.

Customer data is one of the most critical data in OVO to carry out strategies and achieve the company's vision. Therefore, the company requires a good strategy in managing customer data to get better data quality. This research was conducted to measure the current maturity level of data quality management, and provide data quality management strategies based on the Loshin data quality maturity framework and DAMA-DMBOK framework. From the assessment of data quality maturity level, found that in general the quality data management in OVO was already at the third level (Defined), although some dimensions are still at the second level (Repeatable). Furthermore, an analysis of the gap against expectations is conducted which it’s results later become an input for formulating data management strategies to improve data quality in OVO. The results of data management strategy recommendations are use the data quality dimensions that are aligned with the results of reviewing business rules, implementation of a single source of truth, develop data stewards, develop data quality oversight board, certifying reliable data sources, giving participation to business partners in DQM activities, building data quality metrics that are aligned with the business, setting SLAs, monitoring data quality rules, conducting data impact analysis, compiling procedures related to DQM, reporting on data quality scorecards regularly, using tools in checking, adding detailed procedures for data monitoring with automated methods, develop data rules that comply with business, and perform data validation using predefined."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library