Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10 dokumen yang sesuai dengan query
cover
Kelly Nagaruda
"Industri farmasi memiliki berbagai macam data seperti corrective and preventive action (CAPA), continuous improvement (CONIM), dan energi yang dihasilkan dalam jumlah besar dari setiap departemen. Data yang diperoleh akan diproses dan dibutuhkan oleh departemen terkait untuk mengambil keputusan serta mendapatkan informasi misalnya melihat aktual dan target yang harus tercapai. Penulisan tugas khusus ini dilakukan untuk mempermudah pengambilan keputusan oleh user melalui visualisasi data menggunakan dashboard google data studio di PT Finusolprima Farma Internasional. Penulisan tugas khusus praktek kerja dilakukan dengan membuat dashboard google data studio di departemen Manufacturing System and Technology Development (MSTD) PT Finusolprima Farma Internasional. Pada pengerjaannya, sumber data akan diambil melalui spreadsheet dan ditampilkan ke dalam bentuk grafik garis, batang, serta lingkaran yang disesuaikan dengan kebutuhan agar informasi dapat disampaikan dengan jelas secara visual.

The pharmaceutical industry has a variety of data such as Corrective and Preventive Action (CAPA), Continuous Improvement (CONIM), and the energy produced in large quantities of each department. The data obtained will be processed and needed by the relevant departments to make decisions and get information such as seeing the actual and targets that must be achieved. Writing this special task is carried out to facilitate decision making by the user through data visualization using the Google Data Studio Dashboard at PT Finusolprima Farma International. Writing special work practices is done by creating a Google Data Studio dashboard at the Department of Manufacturing System and Technology Development (MSTD) of PT Finusolprima Farma Internasional. In the process, the data source will be taken from spreadsheet and displayed in the form of line graphs, rods, and circles that are tailored to the needs so that information can be conveyed clearly visually."
Depok: Fakultas Farmasi Universitas Indonesia, 2023
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Mahar Santoso
"Penyakit tidak menular (PTM) merupakan penyakit yang memiliki klaim pembiayaan tertinggi dari Badan Penyelenggara Jaminan Sosial Kesehatan (BPJS Kesehatan) pada tahun 2016. Direktorat Pencegahan dan Penyakit Tidak Menular (Dit. PPTM) mempunyai program untuk pemberdayaan masyakat atau Unit Kesehatan Berbasis Masyarakat (UKBM) yang bernama Posbindu PTM. Posbindu PTM merupakan kegiatan berbasis masyarakat dalam upaya menjaga kesehatan dari PTM. Dalam pelaksanaanya Posbindu PTM mencatat data faktor risiko PTM yang melalui wawancara seperti merokok, konsumsi buah dan sayur, konsumsi alkohol, dan aktivitas fisik, pemeriksaan gula darah, tekanan darah, indeks masa tubuh (IMT), dan beberapa pemeriksaan penunjang lain. Pemeriksaan tersebut dicatat dalam sistem informasi surveilans Posbindu PTM. Saat ini belum ada visualisasi data untuk sistem tersebut. Tujuan dari penelitian ini adalah untuk memvisualisasikan data faktor risiko PTM dari sistem tersebut. Penelitian ini mengambil data faktor risiko PTM di Provinsi Jawa Timur pada tahun 2016. Hasil penelitian ini adalah adanya visualisasi data faktor risiko PTM yang dapat membantu melihat data menjadi informasi berbasis wilayah.

Non-communicable disease (PTM) is a disease that has the highest financing claim from the Badan Penyelenggara Jaminan Sosial Kesehatan (BPJS Kesehatan) in 2016. The Directorate of Prevention and Non-Communicable Diseases (Dit. PPTM) has a program for community empowerment or Community Based Health Unit (UKBM ) named Posbindu PTM. Posbindu PTM is a community-based activity in an effort to maintain the health of PTM. In the implementation of Posbindu PTM recorded data on PTM risk factors through interviews such as smoking, fruit and vegetable consumption, alcohol consumption, and physical activity, examination of blood sugar, blood pressure, body mass index (BMI), and several other investigations. The examination was recorded in the Posbindu PTM surveillance information system. At present there is no data visualization for the system. The purpose of this study is to visualize PTM risk factor data from the system. This study took the PTM risk factor data in East Java Province in 2016. The results of this study were the visualization of PTM risk factor data that could help see data into region-based information.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reynard Adha Ryanda
"Mahasiswa drop out memiliki dampak negatif untuk mahasiswa serta perguruan tinggi. Mahasiswa dikatakan drop out apabila mahasiswa tersebut belum
dapat menyelesaikan masa studinya dalam rentang waktu yang telah ditentukan. Data mengenai status penyelesaian serta data akademis mahasiswa terekap
pada Pangkalan Data Pendidikan Tinggi (PDDikti). Berdasarkan data tersebut, mahasiswa drop out pada tahun 2019 mencapai 602.208 mahasiswa atau 7% dari total mahasiswa. Penelitian menggunakan data PDDikti untuk memprediksi drop out telah dilakukan untuk mahasiswa yang telah mencapai tujuh tahun masa
studi. Namun, belum terdapat sistem berbasis web yang dapat memprediksi mahasiswa drop out menggunakan data semester yang lebih sedikit dan visualisasi yang menggambarkan mahasiswa drop out berdasarkan data yang diperoleh dari PDDikti melalui API tertentu. Penelitian ini membandingkan empat
model pembelajaran mesin untuk memprediksi drop out dimana model CatBoost dengan teknik undersampling edited nearest neighbors merupakan classifier
terbaik untuk memprediksi drop out dengan f1-score sebesar 64.23%. Selain itu, penelitian ini berhasil mengimplementasi sistem berbasis web yang dapat digunakan untuk melakukan visualisasi data berdasarkan API yang digunakan untuk memperoleh data dari PDDikti dan juga prediksi mahasiswa yang berpotensi drop out berdasarkan data dari PDDikti. Visualisasi mahasiswa drop out berhasil divisualisasi dengan menggunakan diagram sankey, diagram geo, dan diagram bar. Perolehan data dapat dilakukan menggunakan query data dengan API yang dibuat menggunakan Express.js dan Flask.

Dropped out student giving negative impact to the student itself and also university. A student is said to have dropped out if they can’t complete their studies within the specified timeframe. Data regarding completion status as well as student academic data are recorded in Higher Education Database (PDDikti). Based on these data, the drop out students in 2019 reached 602,208 students or 7% of the total student. Research using PDDikti data to predict drop out has been conducted for students who have reached seven years of study. However, there is no web-based system that could predict drop out student using data with fewer semesters and visualizations portraying dropout students based on PDDikti data through particular API. This study compares four machine learning models to predict drop outs where CatBoost model with undersampling edited nearest neighbors technique is the best classifier to predict drop outs with an f1-score of 64.23%. Other than that, this study succeeded to implement web-based system that could visualize PDDikti data through API and to predict potential students dropping out based on PDDikti data. The visualization of drop out students was successfully visualized using Sankey diagrams, geo diagrams, and bar charts. Data retrieval can be done using data
queries with APIs created using Express.js and Flask.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zidan Kharisma Adidarma
"Penelitian ini berfokus pada pengembangan sistem peringatan dini gempa bumi yang memanfaatkan arsitektur event-driven dan model deep-learning. Tujuannya adalah untuk memodelkan data seismik guna mendeteksi gelombang awal, hiposenter, magnitudo, dan kedalaman gempa. Penulis mengumpulkan data dari ratusan titik seismograf dan mengolahnya dengan model deep-learning untuk menghasilkan prediksi yang akurat. Sistem ini dirancang untuk memberikan visualisasi dan informasi yang mendukung Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) dalam mendeteksi aspek-aspek kritis gempa. Selain itu, penulis mengembangkan sistem terdistribusi untuk mengelola permintaan dan pengolahan data skala besar dengan efisiensi tinggi. Antarmuka pemrograman aplikasi (API) juga disajikan untuk memungkinkan prediksi data yang mudah diakses dan dipahami. Terakhir, integrasi antara model machine learning dengan backend dan frontend dirancang untuk memberikan tampilan yang ramah pengguna. Penelitian ini berkontribusi dalam mengembangkan sistem peringatan dini gempa yang lebih canggih dan responsif, sehingga dapat meningkatkan kesiapan dan keamanan masyarakat dalam menghadapi bencana alam.

This study focuses on the development of an earthquake early warning system utilizing event-driven architecture and deep-learning models. The aim is to model seismic data to detect initial waves, hypocenters, magnitude, and depth of earthquakes. Data from hundreds of seismograph points were collected and processed using deep-learning models to generate accurate predictions. The system is designed to provide visualizations and information to support the Meteorology, Climatology, and Geophysics Agency (BMKG) in detecting critical earthquake aspects. Additionally, a distributed system was developed to manage large-scale data requests and processing efficiently. An Application Programming Interface (API) is also presented for accessible and understandable data predictions. Finally, the integration of machine learning models with backend and frontend is designed to offer a user-friendly display. This research contributes to the development of a more sophisticated and responsive early warning system, enhancing public preparedness and safety in the face of natural disasters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Agil Ghifari
"Penelitian ini berfokus pada pengembangan sistem peringatan dini gempa bumi yang memanfaatkan arsitektur event-driven dan model deep-learning. Tujuannya adalah untuk memodelkan data seismik guna mendeteksi gelombang awal, hiposenter, magnitudo, dan kedalaman gempa. Penulis mengumpulkan data dari ratusan titik seismograf dan mengolahnya dengan model deep-learning untuk menghasilkan prediksi yang akurat. Sistem ini dirancang untuk memberikan visualisasi dan informasi yang mendukung Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) dalam mendeteksi aspek-aspek kritis gempa. Selain itu, penulis mengembangkan sistem terdistribusi untuk mengelola permintaan dan pengolahan data skala besar dengan efisiensi tinggi. Antarmuka pemrograman aplikasi (API) juga disajikan untuk memungkinkan prediksi data yang mudah diakses dan dipahami. Terakhir, integrasi antara model machine learning dengan backend dan frontend dirancang untuk memberikan tampilan yang ramah pengguna. Penelitian ini berkontribusi dalam mengembangkan sistem peringatan dini gempa yang lebih canggih dan responsif, sehingga dapat meningkatkan kesiapan dan keamanan masyarakat dalam menghadapi bencana alam.

This study focuses on the development of an earthquake early warning system utilizing event-driven architecture and deep-learning models. The aim is to model seismic data to detect initial waves, hypocenters, magnitude, and depth of earthquakes. Data from hundreds of seismograph points were collected and processed using deep-learning models to generate accurate predictions. The system is designed to provide visualizations and information to support the Meteorology, Climatology, and Geophysics Agency (BMKG) in detecting critical earthquake aspects. Additionally, a distributed system was developed to manage large-scale data requests and processing efficiently. An Application Programming Interface (API) is also presented for accessible and understandable data predictions. Finally, the integration of machine learning models with backend and frontend is designed to offer a user-friendly display. This research contributes to the development of a more sophisticated and responsive early warning system, enhancing public preparedness and safety in the face of natural disasters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Taufik Pragusga
"Penelitian ini berfokus pada pengembangan sistem peringatan dini gempa bumi yang memanfaatkan arsitektur event-driven dan model deep-learning. Tujuannya adalah untuk memodelkan data seismik guna mendeteksi gelombang awal, hiposenter, magnitudo, dan kedalaman gempa. Penulis mengumpulkan data dari ratusan titik seismograf dan mengolahnya dengan model deep-learning untuk menghasilkan prediksi yang akurat. Sistem ini dirancang untuk memberikan visualisasi dan informasi yang mendukung Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) dalam mendeteksi aspek-aspek kritis gempa. Selain itu, penulis mengembangkan sistem terdistribusi untuk mengelola permintaan dan pengolahan data skala besar dengan efisiensi tinggi. Antarmuka pemrograman aplikasi (API) juga disajikan untuk memungkinkan prediksi data yang mudah diakses dan dipahami. Terakhir, integrasi antara model machine learning dengan backend dan frontend dirancang untuk memberikan tampilan yang ramah pengguna. Penelitian ini berkontribusi dalam mengembangkan sistem peringatan dini gempa yang lebih canggih dan responsif, sehingga dapat meningkatkan kesiapan dan keamanan masyarakat dalam menghadapi bencana alam.

This study focuses on the development of an earthquake early warning system utilizing event-driven architecture and deep-learning models. The aim is to model seismic data to detect initial waves, hypocenters, magnitude, and depth of earthquakes. Data from hundreds of seismograph points were collected and processed using deep-learning models to generate accurate predictions. The system is designed to provide visualizations and information to support the Meteorology, Climatology, and Geophysics Agency (BMKG) in detecting critical earthquake aspects. Additionally, a distributed system was developed to manage large-scale data requests and processing efficiently. An Application Programming Interface (API) is also presented for accessible and understandable data predictions. Finally, the integration of machine learning models with backend and frontend is designed to offer a user-friendly display. This research contributes to the development of a more sophisticated and responsive early warning system, enhancing public preparedness and safety in the face of natural disasters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Agil Ghifari
"Penelitian ini berfokus pada pengembangan sistem peringatan dini gempa bumi yang memanfaatkan arsitektur event-driven dan model deep-learning. Tujuannya adalah untuk memodelkan data seismik guna mendeteksi gelombang awal, hiposenter, magnitudo, dan kedalaman gempa. Penulis mengumpulkan data dari ratusan titik seismograf dan mengolahnya dengan model deep-learning untuk menghasilkan prediksi yang akurat. Sistem ini dirancang untuk memberikan visualisasi dan informasi yang mendukung Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) dalam mendeteksi aspek-aspek kritis gempa. Selain itu, penulis mengembangkan sistem terdistribusi untuk mengelola permintaan dan pengolahan data skala besar dengan efisiensi tinggi. Antarmuka pemrograman aplikasi (API) juga disajikan untuk memungkinkan prediksi data yang mudah diakses dan dipahami. Terakhir, integrasi antara model machine learning dengan backend dan frontend dirancang untuk memberikan tampilan yang ramah pengguna. Penelitian ini berkontribusi dalam mengembangkan sistem peringatan dini gempa yang lebih canggih dan responsif, sehingga dapat meningkatkan kesiapan dan keamanan masyarakat dalam menghadapi bencana alam.

This study focuses on the development of an earthquake early warning system utilizing event-driven architecture and deep-learning models. The aim is to model seismic data to detect initial waves, hypocenters, magnitude, and depth of earthquakes. Data from hundreds of seismograph points were collected and processed using deep-learning models to generate accurate predictions. The system is designed to provide visualizations and information to support the Meteorology, Climatology, and Geophysics Agency (BMKG) in detecting critical earthquake aspects. Additionally, a distributed system was developed to manage large-scale data requests and processing efficiently. An Application Programming Interface (API) is also presented for accessible and understandable data predictions. Finally, the integration of machine learning models with backend and frontend is designed to offer a user-friendly display. This research contributes to the development of a more sophisticated and responsive early warning system, enhancing public preparedness and safety in the face of natural disasters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Razaqa Aulia
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.

The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ananda Fadhil Eka Prakoso
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.

The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Izzan Nufail Arvin
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.

The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library