Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Didik Sukasdi
Abstrak :
Kemajuan yang pesat di bidang telekomunikasi dewasa ini menyebabkan timbulnya berbagai jenis teknik kompresi yang dimanfaatkan dalam berbagai aplikasi. Teknik kompresi yang sangat dikenal saat ini adalah teknik kompresi DCT (discrete cosine transform) dengan metode scanning zig-zagnya. Teknik kompresi yang sedang dikembangkan saat ini adalah teknik kompresi dengan menggunakan transformasi wavelet. Dari perhitungan lama proses, nilai PSNR dan SNR, ternyata teknik kompresi transformasi wavelet memberikan hasil yang lebih bagus dibanding teknik kompresi dengan menggunakan DCT. Sampai saat ini belum ada pembakuan metode scanning yang cocok untuk diterapkan pada transformasi wavelet. Tesis ini membahas simufasi penerapan metode scanning vertikal, horisontal, zig-zag, dan diagonal pada kompresi gambar diam dengan menggunakan transformasi wavelet. Dengan membandingkan kinerja rasing-masing metode scanning, dalam hal ini parameter yang diperbandingkan adalah lama proses, jumlah koefisien yang di-scan, perhitungan RMSE temyata diperoleh bahwa metode scanning yang cocok untuk transformasi Wavelet adalah metode scanning zig-zag.
Image compression is a process to reduce bit information of an image. The purpose of image compression is to obtain fewer amount of data and it can be reconstructed as a new image without decreasing its quality significantly. Image compression could be done in spatial domain or transformation domain. Wavelet transform is the effective methods for image compression process since its ability to localize the bit information contained of the image. One of the important steps in transformation image using wavelet transform is scanning step. To increase performance wavelet transform, choosing scanning method i.e. vertical, horizontal, zig-zag, and diagonal will be done. From analysis view depends on the composition of coefficient and time processing, it can be said that scanning method zig-zag give the best performance. ;Image compression is a process to reduce bit information of an image. The purpose of image compression is to obtain fewer amount of data and it can be reconstructed as a new image without decreasing its quality significantly. Image compression could be done in spatial domain or transformation domain. Wavelet transform is the effective methods for image compression process since its ability to localize the bit information contained of the image. One of the important steps in transformation image using wavelet transform is scanning step. To increase performance wavelet transform, choosing scanning method i.e. vertical, horizontal, zig-zag, and diagonal will be done. From analysis view depends on the composition of coefficient and time processing, it can be said that scanning method zig-zag give the best performance.
Depok: Fakultas Teknik Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Uke Kurniawan Usman
Abstrak :
Dalam teknologi telekomunikasi, pemrosesan sinyal menyandang peran vital. Penerapan teknik tersebut telah merambah ke berbagai bidang seperti halnya bidang pengolahan suara dan ucapan, bidang pengolahan citra, kompresi data, dan estimasi spektral waktu frekuensi. Radar (Radio Detection and Ranging) adalah suatu metode penggunaan gelombang radio untuk mendeteksi kehadiran objek sasaran dan menentukan posisinya (lokasi/jaraknya) serta kecepatannya. Secara umum sinyal echo radar terdiri dari clutter c(t) yang merupakan hamburan dari benda-benda lain, noise n(t) atau derau yang lebih didominasi oleh penerima sendiri (kecuali pada frekuensi rendah), dan sinyal yang mungkin jika ada sasaran. Melalui bentuk pemodelan pembangkitan sinyal echo radar dengan bantuan program berbasiskan Matlab Simulink dan Matlab versi 4.2, maka dapat dianalisa sejauh mana penerapan dari untuk kerja transformasi Wavelet dan membandingkannya dengan transformasi Fourier dalam mengidentifikasi sinyal echo radar . Pemrosesan sinyal ditujukan untuk mengetahui kandungan frekuensi Doppler, dengan kata lain untuk tujuan mengetahui besar kecepatan radial benda terhadap radar. Dalam setiap deteksi diasumsikan selalu ada sasaran yang sudah berhasil dideteksi, sehingga yang harus dilaksanakan adalah mengetahui besar kecepatan radialnya.
Signal processing plays an important role in communication technology. Application of the technique has broadly expanded to various fields such as sound and utterance processing, image processing, data compression and frequency time spectral estimation. Radar (Radio Detection and Ranging) is one method of using radio wave to detect the targeted objects, their positions (in terms of location and distance) and speeds. Signally radar echo signal consists of clutter c(t), scattering from other objects, noise n(t) or roaring sound, dominantly controlled by the internal receiver (except for low frequency), and possible signal, when the target exist. In form of radar echo signal erection modeling supported with the program-based Matlab Simulink and Matlab Version 4.2, we may analyze application of Wavelet transforms displays as far as possible and compare to the Fourier transforms to identify radar echo signal. Signal processing is aimed at knowing the Doppler frequency ingredients. In other words, it is purposed to see the objects radial speed against the radar. It is assumed that there are always targeted objects already successfully detected. In this care, it is our task to determine the radial speed.
Depok: Fakultas Teknik Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sri Endang Wahyuni
Abstrak :
Telah dilakukan analisis metode dekomposisi spektral berbasis transformasi wavelet kontinyu (CWT) terintegrasi atribut seismik Amplitudo RMS dan Similarity dalam mendelineasikan zona patahan-rekahan didukung dengan analisis data sumur dan log FMI (FullboreFormation Micro Imager) dalam menentukan arah patahan-rekahan. Daerah penelitian ini berada pada Lapangan "Falah", Cekungan Jawa Timur dengan formasi Tuban berumur Miosen. Objek penelitian dikategorikan batuan karbonat jenis reef built up dan zona menarik untuk dianalisis pada reservoar karbonat yaitu berupa zona patahan dan rekahan. Hasilnya metode dekomposisi spekral berbasis CWT dapat memperlihatkan patahan-rekahan pada frekuensi tinggi 40 Hz dan terintegrasi Atribut seismik Amplitudo RMS pada lebar jendela 10 ms dan Similarity pada 25 ms. Patahan-rekahan memiliki arah umum kemiringan sebesar 700 berarah timurlaut-baratdaya. Ketiga atribut yang digunakan pada penelitian ini dapat mendelineasikan arah patahan dan rekahan pada reservoar karbonat reef built up.
There have been done analysis of spectral decomposition method which was based on Continuous Wavelet Transformation (CWT), integrated Seismic Attributes of RMS amplitude and Similarity. To delineate fault-fracture zone is supported with well data analysis and FMI (FullboreFormation Micro Imager) log is used to define fault-fracture direction. This project research is located at “Falah” field. East Java basin with Tuban formation is in Miocene era. Research object is categorized carbonate rock with reef built up type and the zone is interesting to analyze of carbonate reservoir which are fault and fracture zone. Result of spectral decomposition method which was based on CWT can show fault-fracture in high frequency at 40Hz and integrated seismic attribute of RMS amplitude with window width at 10ms and then similarity at 25ms. Fault-fracture has common dip at 70° of North East – South West direction. Three attributes were used in this research can delineate fault and fracture direction of carbonate reservoir with reef built up type.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43738
UI - Tesis Membership  Universitas Indonesia Library
cover
Anggrek Citra Nusantara
Abstrak :
Breast cancer can be detected using digital mammograms. In this research study, a system is designed to classify digital mammograms into two classes, namely normal and abnormal, using the k-Nearest Neighbor (kNN) method. Prior to classification, the region of interest (ROI) of a mammogram is cropped, and the feature is extracted using the wavelet transformation method. Energy, mean, and standard deviation from wavelet decomposition coefficients are used as input for the classification. Optimal accuracy is obtained when wavelet decomposition level 3 is used with the feature combination of mean and standard deviation. The highest accuracy, sensitivity, and specificity of this method are 96.8%, 100%, and 95%, respectively.
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:1 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Yahya Muhammad
Abstrak :
Pada beberapa orang difabel mengalami kesulitan pada saat bergerak dalam aktivitas sehari-harinya. Penggunaan prostetik dapat mengurangi keterbatasan tersebut. Pada penggunaan prostetik dapat dimodifikasi dengan alat bantu gerak (aktuator) yang dikendalikan oleh brain computer interface (BCI) guna mengontrol prostetik dengan gelombang otak. Aktivitas membayangkan melakukan gerak motorik yang disebut motor imagery (MI) apabila dapat di-recognition dapat memudahkan pada difabel untuk mengendalikan prostetik miliknya. Tulisan ini bertujuan untuk menjelaskan bagaimana me-recognition sinyal elektroensefalografi (EEG) dengan mencoba mengklasifikasikan sinyal MI EEG. Simulasi dilakukan pada bahasa Python pada framework Tensorflow, Keras. Jenis machine learning yang dipilih adalah Convolutional Neural Network (CNN). Dataset diperoleh dari PhysioNet.org, diolah dengan metode Continuous Wavelet Transformation (CWT) dengan library MNE. ......Some people with disabilities have trouble doing their daily activities. Prosthetics could reduce the difficulties to some degree. The use of a prosthetic can be modified by the addition of an actuator (generate of motion) driven by BCI (brain computer interface) to control prosthetic by brain waves. If we could make the recognition of the brain wave in imaginary activities of motoric movement called motor imagery (MI), it would help people with disabilities to better control their prosthetics. This article’s aim to describe how to do the recognition of EEG signals (electroencephalography) by trying to classify the MI EEG signals. The simulation was run in Phyton on a Tensorflow framework, with a keras wrapper. Convolutional Neutral Network (CNN) was chosen in this research as the machine learning. The datasets gathered from PhysioNet.org were transformed using the library MNE with the Continuous Wavelet Transformation (CWT) method.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library