Ditemukan 1 dokumen yang sesuai dengan query
Tania Marsa Karina
Abstrak :
ABSTRAK
Count data biasanya merupakan hasil dari suatu count process pada waktu yang kontinu. Salah satu distribusi yang sering digunakan untuk memodelkan count data adalah Poisson count model yang interarival times-nya berdistribusi eksponensial. Namun demikian, Poisson hanya valid untuk data yang memilliki sifat equidispersion. Menerapkan Poisson count model terhadap data yang tidak memenuhi asumsi equidispersion data yang overdispersed maupun underdispersed dapat mengakibatkan kesalahan spesifikasi distribusi dari data. Sebuah count model dikembangkan pada penelitian ini dengan memperluas interarrival times yang digunakan, yaitu Weibull sebagai generalisasi dari eksponensial. Weibull interarrival times dapat mengatasi overdispersion dengan parameter shape 0.
ABSTRACT
Count data are usually the outcomes of an underlying count process in continuous time. One of the distributions often used to fit count data is Poisson count model. However, Poisson count model is only valid if the data satisfy equidispersion assumption. Applying Poisson count model to the significantly non equidispersed data overdispersed or underdispersed could lead to misspesification of the distribution of the data. A count model would be derived in this thesis by expanding the interarrival times used, that is Weibull interarrival times as the generalization of exponential. Weibull interarrival times could handle overdispersed data with shape parameter 0.
2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library