Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Daniels, Joanne M.
Albany, N.Y. : Delmar Cengage Learning, 2006
615DANC001
Multimedia  Universitas Indonesia Library
cover
Himan Hanivan
"ABSTRAK
Numerous studies have constructed financial inclusion indexes for Indonesia, using a multidimensional approach. However, there is a problem with the methodology, which assumes that all the dimensions play the same role in defining financial inclusion, since they are based on equal weighting criteria. This paper aims to obviate concerns with the methodology by developing a more empirically based index, namely, a weighted multidimensional index of financial inclusion based on two-stage principal component analysis. In other words, we endogenize the weights. We find that usage is the most important dimension in defining financial inclusion in Indonesia, followed by availability and access."
Jakarta: Bank Indonesia Insitute, 2019
332 BEMP 22:3 (2019)
Artikel Jurnal  Universitas Indonesia Library
cover
Faris Abdurrahman Pabe
"Backpropagation neural network backpropagation adalah salah satu algoritma machine learning yang dapat digunakan untuk melakukan klasifikasi data. Klasifikasi data dilakukan dalan serangkaian proses training dan testing. Pada akhir proses testing yang juga merupakan akhir dari proses backpropagation, akan didapatkan nilai recognition rate. Nilai recognition rate merupakan nilai yang menandakan banyaknya data yang berhasil diklasifikasi dengan benar pada proses testing terhadap seluruh testing dataset. Recognition rate erat kaitannya dengan masalah underfitting, overfitting, local minima, dan local maxima. Keempat masalah ini menyebabkan nilai recognition rate yang didapatkan kurang optimal. Namun biasanya untuk menangani keempat masalah ini dilakukan pengaturan pada beberapa paramter, misalnya learning rate, momentum, jumlah layer, jumlah nodes, weights, dan lain-lain. Pada tulisan ini akan dijelaskan program optimasi yang melakukan pengaturan pada nilai inisialisasi weights untuk menangani keempat tersebut. Program ini melakukan inisialisasi weights menggunakan genetic algorithm pada backpropagation yang mengimplementasikan k-fold crossvalidation. Untuk menguji dan membandingkan program optimasi terhadap program implementasi backpropagation yang tidak dioptimasi program non-optimasi, digunakan empat dataset, yaitu iris flower dataset, seeds dataset, wine dataset, dan EEG dataset buatan. Pada akhir pengujian didapatkan hasil bahwa program optimasi berhasil mendapatkan nilai recognition rate lebih tinggi pada iris flower dataset, yaitu 97.33 pada program optimasi dan 96.67 pada program non-optimasi. Kemudian didapatkan pula nilai recognition rate yang lebih tinggi pada seeds dataset, yaitu 93.33 pada program optimasi dan 92.86 pada program non-optimasi. Lalu didapatkan pula nilai recognition rate yang lebih tinggi pada EEG dataset buatan, yaitu 37.5 pada program optimasi dan 35.94 pada program non-optimasi. Sedangkan pada wine dataset didapatkan nilai recognition rate yang sama antara program optimasi dan program non-optimasi, yaitu 99.44.

Backpropagation neural network backpropagation is one of machine learning algorithms that can be used to classify data. The data classification is done in a series of trainig and testing processes. At the end of testing process that is also the end of backpropagation process, the algorithm will produce recognition rate value. Recognition rate value indicates the total of correctly classified data in testing process againts all data in testing dataset. Recognition rate value related to underfitting, overfitting, local minima, and local maxima problems. However, to handle these problems adjusting some parameters are necessary to be done. These parameters are learning rate, momentum, number of layers, number of nodes, weights, etc. In this writting will be explained an optimization program that adjusts the initialization values of weights to handle those four problems. This program initializes weights using genetic algorithm on backpropagation implementing k fold crossvalidation. To test and compare the optimization program with a program that implements backpropagation without optimization non optimzation program four datasets will be used, those are iris flower dataset, seeds dataset, wine dataset, and artificial EEG dataset. At the end of the test, the results show that optimization program obtained higher recognition rate value on iris flower dataset, that is 97.33 on optimization program againts 96.67 on non optimization program. Other than that, optimization program obtained higher recognition rate value on seeds dataset, that is 93.33 on optimization program againts 92.86 on non optimization program. Also, optimization program obtained higher recognition rate value on artificial EEG dataset, that is 37.5 on optimization program againts 35.94 on non optimization program. However, the optimization program obtained an equal recognition rate value on wine dataset, that is 99.44."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyu Wuryanti
"ABSTRAK
Reliability building inspection should be done for every building according to laws and regulations. the inspection encompasses four criteria, safety, health, comfort, and convenience (4K). the assessment result should be displayed in simple way to decide a building condition. Reliable condition which covers whole criteria are difficult to be achieved due to the ability of the owner. The authors propose a model assessment of building inspection by combining two methods. Dichotomy method for assessment safety and score method for three other. this paper applies the importance or Analytic Hierarchy Process (AHP) for implementation score method. these researchis specific a certain building function: office, mall, and hotel. the building is reliable if it have two assessment requirements: (1) needs all the safety criteria with obtain P score, and (2) score criteria health, comfort and convenience, Ss, Sn, Sm for, more bigger than 60. in average the importance for the first level is obtained 51% for the comfort criteria, followed by 29% for the health criteria, and 20% for the convenience criteria. based on the absolute score for sub criteria, the importance weight with the highest rank for office and hotel building is addressed for the comfort criteria especially for air condition in room with the weight 20% and for mall building is addressed for the comfort criteria in space area and connecting rooms with weight 20%."
Jakarta: Pusat Litbang Perumahan dan Permukiman, 2016
728 JURPEM 11:2 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Vinay Chandwani
"With rapid growth in the construction industry, Ready Mix Concrete (RMC) is playing a key role in offering customized quality of concrete to contractors and builders. The workability of concrete covers early age operations of concrete viz., placing, compaction and finishing. Since RMC is manufactured at a plant and transported to the construction site, hence the loss of workability is of prime concern due to the considerable time interval between mixing and placing of concrete. Workability of concrete measured using a slump test is an indicator to evaluate the life of RMC during its transportation phase and uniformity of concrete from batch to batch. The concrete mix proportions like cement, fly ash, coarse aggregates, fine aggregates, water and admixtures govern the workability or slump value of the concrete. Artificial Neural Networks (ANNs) learning from past examples gathered from RMC plant has been used to model the functional relationship between the input parameters and the slump value. The ANN model provided promising results compared to first order and second order regression techniques in modeling unknown and complex nature of relationships exhibited by the input parameters and the slump of concrete. The neural network synaptic weights which control the learning mechanism of ANN have been further used to compute the percentage relative importance of each constituent of RMC on the slump value."
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:2 (2015)
Artikel Jurnal  Universitas Indonesia Library