Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Aldinisa Rahma Sabillah
"ABSTRAK
Dalam penelitian ini, dibahas penerapan Algoritma Winnowing dalam Pengembangan Sistem Penilaian Pengucapan Bahasa Jepang (SIPENILAI). Algoritma Winnowing adalah sebuah algoritma berbasis fingerprint yang digunakan untuk menilai tingkat kemiripan dari dua buah teks. Masukkan dari sistem ini berupa suara yang kemudian diubah menjadi teks dengan speech recognition Julius. Pertama, dokumen yang telah ditangkap oleh Julius akan diproses untuk mendapatkan nilai hash masing-masing. Setiap kata memiliki nilai hash yang berbeda, digunakan algoritma Rolling Hash untuk mencari nilai hash tersebut. Dari kumpulan nilai hash dipilih nilai hash minimum sebagai fingerprint. Kedua dokumen teks yang telah diwakili fingerprint, akan dibandingkan kesamaannya menggunakan Cosine Similarity. Akurasi yang didapatkan sistem mencapai 90.33%.

ABSTRACT
In this research, discussed the application of the Counteract Algorithm in the Development of Japanese Language Assessment System (SIPENILAI). Counteracting Algorithm is a fingerprint-based algorithm used to assess the degree of similarity of two texts. Julius. First, documents that have been taken by Julius will be processed to get their respective hash values. Each word has a different hash value, used the Rolling Hash algorithm to find the hash value. From the collection of hash values the minimum hash value is chosen as the fingerprint. The two text documents that have the fingerprint represented, will be compared offered using Cosine Similarity. The accuracy obtained by system is 90.33%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahasena Alfafa
"Pada skripsi ini dibuat rancangan sistem deteksi plagiarisme pada karya tulis digital dua bahasa Indonesia - Inggris . Bahasa Indonesia digunakan sebagai karya tulis yang akan diuji dan bahasa Inggris sebagai karya tulis referensinya. Sistem ini menerapkan algoritma winnowing yang dilengkapi dengan metode penerjemah bahasa dan synonym recognition.
Metode synonym recognition ini mampu mendeteksi sinonim dari tiap kata, mampu melakukan perubahan kata secara otomatis ketika diperlukan, dan mampu meningkatkan akurasi pada sistem deteksi plagiarisme dua bahasa yang sedang dikembangkan.
Hasil penelitian ini menunjukkan bahwa penggunaan parameter winnowing yang tepat serta dilengkapi synonym recognition didapatkan peningkatan akurasi sistem dari 0.03 hingga 13.04.

In this thesis, the design of plagiarism detection system on bilingual digital essay Indonesian English . Indonesian used as a document to be tested and English as a reference document. The system applies winnowing algorithms that are equipped with language translator methods, and synonym recognition.
This synonym recognition method is able to detect synonyms of each word, capable of automatically changing words as needed, and capable of improving accuracy in the bilingual plagiarism detection system being developed.
The results of this study indicate that the use of appropriate winnowing parameters and by applying synonym recognition obtained improved system accuracy from 0.03 to 13.04.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68638
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gifari Ramadhan
"Penelitian ini membahas tentang pengembangan sistem penilaian ujian lisan (SIPENILAI) pengucapan bahasa Jepang menggunakan algoritma winnowing. Winnowing merupakan algoritma dengan basis fingerprint yang digunakan untuk mengukur tingkat kemiripan teks. Masukan sistem penilaian ujian lisan (SIPENILAI) adalah suara yang pada proses selanjutnya diubah dalam bentuk teks dengan speech recognition Julius. Keluaran Julius adalah teks berkarakter Jepang. Pada teks tersebut dilakukan proses romanisasi untuk mengubah karakter ke bentuk romaji. Pemodelan bahasa N-gram diterapkan pada algoritma winnowing dan Julius. Sistem penilaian menggunakan variasi parameter winnowing n=2, p=2 dan w=2 dan perhitungan cosine similarity yang menghasilkan akurasi sebesar 91,94%. Diamati faktor-faktor yang mempengaruhi akurasi setiap pengguna. Dalam melakukan penilaian, sistem berjalan dengan kecepatan sebesar 35,49 KB/s.

This research discusses the development of oral examination grading system (SIPENILAI) for Japanese pronunciation using winnowing algorithm. Winnowing is a fingerprint-based algorithm that is used to measure text similarity rate. The oral examination grading system (SIPENILAI) receives speech input, then it is converted into text with Julius speech recognition. The output of Julius is text with Japanese characters. Romanization process is carried out to convert the Japanese character to the romaji form. N-gram language modeling is applied to winnowing algorithm and Julius. The accuracy rate is 91,94% by using n = 2, p = 2 and w = 2 winnowing parameters and cosine similarity. In this research, factors that influence the accuracy rate are observed. The system executes the process with speeds of 35,49 KB/s.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Helmi Arrazy
"SIMPLE-O atau Sistem Penilaian Esai Otomatis merupakan sebuah proyek yang dikembangkan oleh Departemen Teknik Elektro, Universitas Indonesia sejak tahun 2007. Penelitian ini membahas penerapan algoritma winnowing dan algoritma ASCII-Based Hashing pada pengembangan SIMPLE-O untuk ujian bahasa Jepang. Sistem dikembangkan dengan menggunakan bahasa pemrograman Python. Beberapa penelitian sebelumnya pernah menggunakan algoritma winnowing untuk mengembangkan SIMPLE-O. Namun yang membedakannya pada penelitian ini adanya penggantian algoritma hashing yang biasa digunakan, yaitu dari Rolling Hash menjadi algoritma ASCII-Based Hashing. Algoritma hashing tersebut termasuk kedalam algoritma LSH (Locality-sensitive hashing). Proses penilaian membutuhkan dua data input, yaitu jawaban mahasiswa (peserta ujian) dan kunci jawaban dosen. Kedua data input yang masih dalam bahasa Jepang akan diromanisasi menjadi teks romaji (huruf latin), setelah itu akan diproses oleh algoritma winnowing dan algoritma hashing untuk menghasilkan fingerprint. Maksud dari penelitian ini adalah untuk mencoba mendapatkan akurasi sistem yang paling tinggi. Dari hasil penelitian, didapatkan rata-rata akurasi nilai total sistem sebesar 87.10% jika parameter winnowing untuk setiap data input diseragamkan (n = 2 dan w = 2). Akurasi tersebut mengalami peningkatkan sebesar 0.24% dari hasil penelitian sebelumnya yang bernilai 86.86%. Namun jika parameter winnowing disesuaikan menggunakan nilai kombinasi yang paling terbaik, maka rata-rata akurasi nilai total sistem yang didapatkan adalah 92.74%. Akurasi tersebebut mengalami peningkatan sebesar 1.82% dari hasil penelitian sebelumnya yang bernilai 90.92%. Untuk akurasi total per mahasiswa dapat mencapai 99.95%, dan akurasi pernomor untuk tiap sampel mahasiswa berkisar dari 69.55% hingga 100%.

SIMPLE-O or Automated Essay Grading System is a project developed by the Department of Electrical Engineering, University of Indonesia since 2007. This research discusses the implementation of the winnowing algorithm and the ASCII-Based Hashing algorithm in the development of SIMPLE-O for the Japanese language exam. The system was developed using the Python programming language. Several previous research have used the winnowing algorithm to develop SIMPLE-O. But what distinguishes it in this research is the replacement of the hashing algorithm that is commonly used, namely from Rolling Hash to ASCII-Based Hashing algorithm. ASCII-Based Hashing is one of the LSH (Locality-sensitive hashing) algorithm. The grading process requires two input data, namely the examinee's answers and lecturers' answer keys. The two-input data that are still in Japanese will be romanized into romaji text (Latin letters), after that it will be processed by the winnowing algorithm and hashing algorithm to generate fingerprints. The purpose of this research is to try to get the highest system accuracy. From the research results. The average accuracy of the total system value is 87.10% if the winnowing parameters for each input data are equated (n = 2 and w = 2). The accuracy increased by 0.24% from the results of previous research which were worth 86.86%. However, if the winnowing parameter is adjusted using the best combination value, then the average accuracy of the total system value obtained is 92.74%. The accuracy has increased by 1.82% from the results of previous research which were worth 90.92%. The total accuracy of each student can reach 99.95%, and the accuracy of each number for each student sample ranges from 69.55% to 100%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fathimah Rahimullah
"Pada penelitian ini, penerapan dari komputasi paralel dan komputasi awan dilakukan dalam sistem pendeteksi plagiarisme menggunakan algoritma winnowing dengan tujuan untuk mempersingkat waktu eksekusi program. Paralelisasi dilakukan pada bagian pemrosesan data paragraf dari dokumen referensi. Program dijalankan pada sistem komputasi awan OpenStack yang berada di Departemen Teknik Elektro, Universitas Indonesia agar dapat dilakukan paralelisasi secara optimal dengan mengutilisasi inti prosesor pada sistem. Didapatkan hasil bahwa waktu eksekusi dengan komputasi paralel berhasil menjadi lebih cepat sebesar 1,07 sampai dengan 3,52 kali dibandingkan waktu eksekusi dengan komputasi serial.

In this research, impementation of parallel computing and cloud computing was done within the plagiarism detection system using the winnowing algorithm with an objective to decrease the execution time of the program. Parallelization was done on the portion of the program where the paragraphs of reference documents are processed. The program was then executed on the OpenStack cloud computing system in the Department of Electrical Engineering, Universitas Indonesia in order for the parallelization to be optimal by utilizing the cores on the system. The results were that the execution time with the paralel computation was successfully sped up by 1.07 to 3.52 times compared to the execution time with serial computing."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yussanti Nur Fajrina
"ABSTRAK
Algoritma Winnowing merupakan algoritma dengan sifat character-based, dimana algoritma tersebut menggunakan fingerprint dalam mendeteksi tingkat kesamaan antar teks. Skripsi ini membahas mengenai penerapan dan pengembangan sistem penilai esai otomatis berbasis algoritma winnowing, serta metode-metode untuk mengukur tingkat kesamaan fingerprint. Pengujian beberapa pendekatan metode dilakukan untuk meningkatkan tingkat akurasi dari sistem. Pendekatan metode tersebut adalah dengan metode cosine similarity, jaccard index, dan dice similarity. Implementasi dari algoritma winnowing berhasil meningkatkan akurasi sistem. Peningkatan akurasi ini diukur dengan membandingkan SIMPLE-O berbasis winnowing dengan SIMPLE-O yang telah dikembangkan sebelumnya yaitu berbasis LSA Latent Semantic Analysis .

ABSTRACT
Winnowing algorithm is a character based algorithm. Winnowing used fingerprint to detect the similarity between texts. This thesis discusses the application and the development of automated essay grading SIMPLE O based on winnowing algorithm, as well as methods to measure the similarity between fingerprints. Several text similarity approaches have been tested to improve the accuracy of the system. In term of text similarity, cosine similarity, jaccard index, and dice similarity are used to measure the similarity between texts. Stemming and Synonym Recognition also implemented in this system. Winnowing algorithm has improved the accuracy of the system. The accuracy was measured by comparing SIMPLE O winnowing based with SIMPLE O LSA Latent Semantic Analysis based."
2017
S67127
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dyah Lalita Luhurkinanti
"ABSTRACT
Algoritma winnowing merupakan algoritma yang berbasiskan fingerprint untuk mendeteksi tingkat kemiripan teks. Penelitian ini akan membahas pengembangan sistem penilai otomatis SIMPLE-O yang dikembangkan Departemen Teknik Elektro berbasis algoritma winnowing dan diterapkan untuk bahasa Jepang. Pada input bahasa Jepang diterapkan proses romanisasi untu mengubah karakter ke bentuk romaji. Penelitian dilakukan untuk mencari parameter terbaik dengan nilai akurasi atau agreement with human rater tertinggi. Dari hasil percobaan diketahui jika parameter untuk tiap-tiap input disesuaikan, secara keseluruhan sistem dapat memiliki rata-rata akurasi nilai total seluruh data hingga 90.92 dengan akurasi nilai total perpeserta ujian dapat mencapai 99.91 dan akurasi perjawaban untuk tiap peserta ujian berkisar dari 60.19 hingga 100.

ABSTRACT
Winnowing Algorithm is a fingerprint based algorithm for detecting similarity between texts. This research will talk about the development and application of automatic essay grading system SIMPLE O, developed by Department of Electrical Engineering with winnowing algorithm for Japanese language. On the Japanese language input, romanization is implemented to change the input to romaji. The purpose of this research is to find the best parameter with the highest accuracy or agreement with human rater. The result of the conducted experiment shows that with customized parameter for each input, the average of total score for all students is 90.92 with accuracy for each student is up to 99.91 and accuracy for each problem ranged from 60.19 to 100."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Fahmi Fajrin
"Plagiarisme merupakan tindakan mengakui hasil karya orang lain sebagai hasil karya pribadi tanpa izin pemilik asli karya tersebut. Tindakan plagiarisme dalam bentuk dokumen sudah sangat banyak terjadi saat era digital seperti ini. Pada skripsi ini dibuat sistem pendeteksi plagiarisme otomatis pada karya tulis digital dwibahasa (Indonesia - Inggris) dengan bahasa Indonesia digunakan sebagai karya tulis yang akan diuji dan bahasa Inggris sebagai karya tulis referensinya. Sistem pendeteksi plagiarisme terdapat dua bagian penting, yaitu akurasi dan kecepatan yang dihasilkan oleh sistem.
Pada skripsi ini dilakukan pengembangan terhadap sistem pendeteksi plagiarisme dengan menambahkan penerjemah Microsoft Translator API dan menerapkan similar word. Penerapan penerjemah Microsoft Translator API dapat meningkatkan akurasi yang cukup signifikan yaitu sebesar 14,93 % dibandingkan penerjemah Googletrans API dan penerapan similar word dapat meningkatkan akurasi sistem dari 0,24% hingga 15,37%. Parallel processing diterapkan untuk mengatasi permasalahan waktu eksekusi yang lama ketika jumlah dokumen referensi yang digunakan banyak. Hasil pengujian dengan menerapkan parallel processing dapat meningkatkan kecepatan 1,06 hingga 6,71 kali lebih cepat dari program yang berjalan secara serial.

Plagiarism is the act of acknowledging the work of others personal work without their permissions. The prevalence of plagiarism is high in this digital era. In this thesis, an automatic plagiarism detection system on bilingual digital paper (Indonesian-English) is created with Indonesian paper as the tested paper and English paper as the reference paper. The plagiarism detection system has two important parts, namely the accuracy and speed produced by the system.
In this thesis, a plagiarism detection system is developed by adding a Microsoft Translator API translator and applying a similar word. The application of the Microsoft Translator API translator can increase the accuracy of the significant amount of 14.93% compared to the Googletrans API translator and the application of similar word can increase system accuracy from 0.24% to 15.37%. Parallel processing will be applied to overcome the problems of a long execution time when the number of reference documents that are used a lot. The test results by applying parallel processing can increase the speed of 1.06 to 6.71 times faster than programs running in serial.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yireh Anugerah Nanang Sukabhakti
"Departemen Teknik Elektro sebelumnya sudah mengembangkan sistem penilai esai otomatis (SIMPLE-O) yang berbasis algoritma winnowing dan diterapkan pada bahasa Jepang. Sistem penilai esai otomatis tersebut menggunakan algortima winnowing yang berbasiskan fingerprint dan hashing untuk mendeteksi tingkat kemiripan teks. Sistem tersebut memiliki rata-rata akurasi nilai total seluruh data hingga 90.92% dengan akurasi nilai total perpeserta ujian dapat mencapai 99.91% dan akurasi perjawaban untuk tiap peserta ujian berkisar dari 60.19% hingga 100%. Penelitian kali ini berusaha untuk mencoba untuk menaikkan akurasi tersebut. Cara yang digunakan ialah menganti hashing yang digunakan dari Rolling Hash ke MD5 dan mengimplementasi synonym recognition. Hasil percobaan ini memiliki rata-rata tingkat akurasi 85.61% dengan akurasi perjawaban untuk tiap perserta ujian berkisar 68.44% hingga 99.96%

Departement of Electrical Engineering has already developed automatic essay grading system (SIMPLE-O) which utilize winnowing algorithm which is a fingerprint-based and hash-based algorithm for detecting similarity between texts. The system have result of average of total score for all students is 90.92% with accuracy for each student is up to 99.91% and accuracy for each problem ranged from 60.19% to 100%. This research will try to raise the accuracy. The proposed method is by changing the hashing used by the system from Rolling Hash to MD5 and implementing synonym recognition. The result of conducted experiment has the average of accuracy of 85.61% and the accuracy for each problem ranged from 68.44% to 99.96%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library