Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Fredina Destyorini
"The gas diffusion layer (GDL) is one of the critical components of a proton exchange membrane fuel cell (PEMFC). It is generally made of a fossil-fuel-based carbon material. In this study, carbon composite paper (CCP) for GDL was prepared by using carbon material obtained from coconut coir. To obtain the CCP, 80 wt% carbon material from the coconut coir and 20 wt% polymer binder (ethylene vinyl acetate and polyethylene glycol) were mixed in xylene solvent at 100°C, cast on molded glass, and then rolled. The carbon material consists of a mixture of carbon fibers (length: 2 mm) and powders (size: 74 µm). Subsequently, the CCP was treated with polytetrafluoroethylene solution (10 wt%). The physical properties of the CCPs, such as through-plane electrical conductivity, porosity, density, and hydrophobic properties, were investigated. Scanning electron microscopy and energy-dispersive spectroscopy mapping were used to analyze the morphology and polytetrafluoroethylene (PTFE) distribution in the CCP. The through-plane conductivity test showed that CCP with 70 wt% carbon fiber, 10 wt% carbon powder, and 20 wt% polymer was the optimum sample, and it showed the highest electrical conductivity of 2.22 S cm-1. The physical properties of PTFE-treated CCP, such as porosity, density, and contact angle, were almost similar to that of commercial carbon paper used as a GDL. Therefore, the CCP prepared from coconut coir can be applied as a GDL in a PEMFC."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Tri Arini
"Transparent conducting oxide (TCO) glasses play an important role in
various technology, including dye sensitized solar cells. One of the most
commonly used glass is indium tin oxide (ITO) glass, which is expensive.
Therefore, the main
purpose of this research was to determine if ITO glass can be replaced with
fluorine-doped tin oxide (FTO) glass,
which is easier and more economic to manufacture. For this purpose, a tin
chloride dehydrate (SnCl2.2H2O)
precursor was doped with ammonium
fluoride (NH4F) using a
sol-gel method and spray pyrolysis technique to
investigate the fabrication process for conductive
glass. NH4F was
doped at a ratio of 2 wt% in the SnCl2.2H2O precursor at
varying deposition times (10, 20, and 30 minutes) and substrate temperatures
(250, 300, and 350°C). The
results revealed that longer deposition times created thicker glass layers with
reduced electrical resistivity. The highest optical
transmittance was 75.5% and the lowest resistivity
was 3.32´10-5 Ω.cm,
obtained from FTO glass
subjected to a 20-minute deposition time at deposition temperature of 300oC."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library