Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Haya Ayu Fauziyyah
"Paduan super berbasis besi-nikel biasanya mengandung lebih dari delapan elemen paduan dan umum digunakan dalam aplikasi aerospace seperti pada komponen cakram turbin menjadikan perubahan komposisi dapat menyebabkan perubahan sifat mekanis yang signifikan. Paduan super ini mengandung 15–60% besi dan 25–45% nikel dan digunakan dalam bilah dan cakram mesin yang memerlukan sifat ekspansi termal rendah. Paduan super berbasis besi ini menarik untuk dipelajari karena karakteristik temperatur tinggi dan koefisien ekspansi termal yang rendah tetapi di sisi lain menawarkan harga yang lebih ekonomis. Dalam aplikasi temperatur tinggi kekuatan tarik akan berubah sesuai dengan temperaturnya sehingga rentan terjadi kegagalan. Sementara dalam aplikasi seperti turbin yang dalam penggunaannya sering ditemukan kegagalan karena bekerja pada putaran yang tinggi dan lingkungan abrasif dibutuhkan nilai kekerasan yang sesuai. Sehingga dibutuhkan sebuah solusi yang kompetitif dan efisien dalam proses desain dan rekayasa paduan super berbasis besi-nikel. Metode pembelajaran mesin deep learning regresi dapat menjadi solusi dalam memberikan prediksi kekuatan tarik, kekerasan dan titik lebur yang presisi untuk aplikasi tertentu sehingga tidak dibutuhkan eksperimen yang memakan waktu. Dalam penelitian ini dilakukan variasi parameter berupa arsitektur model, learning rate, test size, random state, batch size, dan epoch dalam rangka mencari parameter optimum bagi model C2P besi-nikel. Nilai akurasi optimum yang dihasilkan dengan matriks R2 sebesar 98,2% dan matriks RRMSE 4,12%. Nilai ini didapat menggunakan parameter yaitu 4 hidden layers dengan noda (128,128,128,128), learning rate sebesar 10-3, test size sebesar 0,2, random state sebesar 25, batch size sebesar 64, dan epoch sebesar 250.

Iron-nickel-based superalloys typically contain more than eight alloying elements and are commonly used in aerospace applications such as in turbine disc components where compositional changes can lead to significant changes in mechanical properties. This superalloy contains 15–60% iron and 25–45% nickel and is used in engine blades and discs where low thermal expansion properties are required. This iron-based super alloy is interesting to study because of its high temperature characteristics and low coefficient of thermal expansion, but on the other hand offers a more economical price. In high temperature applications the tensile strength will change according to the temperature so that it is susceptible to failure. Meanwhile, in applications such as turbines where failure is often found due to working at high rotations and an abrasive environment, an appropriate hardness value is required. So that a competitive and efficient solution is needed in the design and engineering process of iron-nickel-based super alloys. The deep learning regression machine learning method can be a solution in providing precise predictions of tensile strength, hardness and melting point for certain applications, eliminating the need for time-consuming experiments. In this study, various parameters were carried out in the form of model architecture, learning rate, test size, random state, batch size, and epoch in order to find the optimum parameters for the iron-nickel C2P model. The optimum accuracy value generated by the R2 matrix is 98.2% and the RRMSE matrix is 4.12%. This value is obtained using parameters, namely 4 hidden layers with dense (128,128,128,128), learning rate of 10-3, test size of 0.2, random state of 25, batch size of 64, and epoch of 250."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ibnu Rais Syukran
"Paduan super merupakan jenis paduan yang dapat mempertahankan kekuatan mekanis dan kestabilan permukaannya pada temperatur yang sangat tinggi sehingga cocok diaplikasikan pada bidang kedirgantaraan, khususnya turbin gas. Jenis paduan super yang paling banyak digunakan adalah paduan super berbasis nikel karena memiliki struktur kristal FCC yang stabil di segala temperatur. Agar dapat digunakan dalam jangka waktu yang lama, kegagalan pada paduan super berbasis nikel dapat dicegah dengan mengetahui kekuatan tarik dari paduannya. Selain itu untuk mencegah terjadinya keausan pada komponen mesin, kekerasan pada paduan super berbasis nikel juga harus diketahui. Adapun titik leleh dari paduan super berbasis nikel juga harus dapat diketahui untuk mencegah terjadinya pelunakan paduan super pada temperatur yang sangat tinggi. Biaya produksi paduan super berbasis nikel tergolong mahal, karena dibuat berdasarkan pendekatan trial and error yang memakan waktu. Pada penelitian ini, dilakukan pembuatan sebuah program yang dapat memprediksi sifat mekanis paduan super berbasis nikel menggunakan pembelajaran mesin dengan metode deep learning. Melalui pembelajaran mesin, biaya produksi paduan super berbasis nikel dapat ditekan serta mempersingkat siklus perkembangan material. Penelitian ini menghasilkan suatu program deep learning dengan jenis model regresi yang dapat memprediksi kekuatan tarik, kekerasan, dan titik leleh paduan super berbasis nikel dengan keakurasian model menurut metrik R2 sebesar 98,77% berdasarkan variasi hyperparameter yang ditetapkan sebanyak tiga hidden layer dengan dense 256, 128, 64, test size sebesar 25%, random state dengan nilai 75, batch size sebesar 32, epoch sebanyak 300, dan learning rate sebesar 0,001.

A superalloy is a type of alloy that can maintain its mechanical strength and surface stability at very high temperatures so that it is suitable for application in the aerospace field, especially in gas turbines. The most widely used type of superalloy is Ni-based superalloy because it has a stable FCC crystal structure at all temperatures. The failure of Ni-based superalloys can be prevented by knowing the tensile strength of the alloy for a longer-term used. In addition, to prevent wear on the engine components, the hardness of Ni-based superalloys must also be known. The melting point of Ni-based superalloys must also be known to prevent softening of the superalloy at very high temperatures. The production cost of Ni-based superalloys is quite expensive because they are made based on a time-consuming trial and error approach. In this research, a program is developed that can predict the mechanical properties of Ni-based superalloys using machine learning with deep learning methods. Through machine learning, the production cost of Ni-based superalloys can be reduced, and the material development cycle can be shortened. The result of this research is a deep learning program with a regression model which can predict the tensile strength, hardness, and melting point of Ni-based superalloys with a model accuracy of 98.77% according to the R2 metric based on the hyperparameter variations set as three hidden layers wi"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Zubaidah
"Tesis ini membahas efek modifikasi status hidrasi dengan memperhitungkan Indeks Massa Tubuh (IMT) pada petugas ground handling di Bandara Soekarno Hatta. Yang sering terpajan panas dalam waktu lama, yang dapat menyebabkan dehidrasi dan kelelahan. Lestari (2016) dalam penelitiannya menyatakan iklim kerja yang panas dan melebihi NAB dapat meningkatkan risiko terjadinya dehidrasi.  Penelitian ini menggunakan pendekatan cross sectional, 219 responden yang bekerja di dalam Gedung dan apron. Status hidrasi diukur menggunakan berat jenis urin, IMT diukur dengan berat badan dan tinggi badan, dan kelelahan diukur menggunakan kuisioner IFRC. Hasil penelitian 63,5% responden mengalami kelelahan berat dan 36,5% mengalami kelelahan ringan. 70,3% pekerja memiliki status hidrasi yang baik, sementara 29,7% mengalami dehidrasi. 58,9% responden obesitas dan sisanya 41,1% tidak obesitas. Hasil analisis statistik menunjukkan tidak ada hubungan signifikan antara status hidrasi terhadap kelelahan kerja (p-value 0,340), ada hubungan signifikan antara IMT dengan kelelahan (p-value 0,014). Ada interaksi antara status hidrasi dengan IMT. Analisis multivariat menyatakan ada hubungan signifikan antara efek modifikasi status hidrasi dengan memperhitungakan IMT terhadap kelelahan (p-value 0,022 dan cOR 1,184). Hal ini menunjukkan bahwa terdapat pengaruh status hidrasi terhadap tingkat kelelahan kerja bergantung atau bervariasi menurut status IMT, sehingga diketahu nilai OR pada IMT obesitas (kode 1) adalah 1,46. Artinya responden yang obesitas dengan status dehidrasi berisiko 1,46 kali lebih tinggi pada responden yang mengalami kelelahan berat dibandingkan dengan status euhidrasi setelah dikontrol oleh faktor risiko terkait pekerjaan dan faktor risiko tidak terkait pekerjaan.

This thesis discusses the effect of hydration status modification considering Body Mass Index (BMI) on ground handling workers at Soekarno Hatta airport. Those worker are often exposed to prolonged heat, which can cause dehydration and fatigue. Lestari (2016) stated that a hot working climate exceeding TLV can increase the risk of dehydratin. This cross-sectional study involved 219 respondents working inside buildings and the apron. Hydration status was measured using urin specific gravity; BMI was measured with weight and height; and fatigue was measured using the IFRC questionnaire. The result showed that 63,5% of respondents experienced severe fatigue and 36,5% experienced mild fatigue; 70,3% of workers had good hydration status, while 29,7% were dehydrated; 58,9% of respondents were obese and the remaining 41,1% were not obese. Statistical analysis results showed no significant relationship between hydration status and work fatigue (p-value 0,340), but there was a significant relationship between BMI and fatigue (p-value 0,014). There was an interaction between hydration status and BMI. There was also a significant relationship between the effect of hydration status modification considering BMI on fatigue (p-value 0,022 amd cOR 1,184). This shows that the impact of hydration status on the level of work fatigue varies depending on BMI status. The OR value for obese BMI (code 1)was 1,46; meaning that obese respondents with dehydration were 1,46 times more likely to experience severe fatigur compared to respondents with good hydration status, after controlling for work-related and non-work-related risk factors.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library