Ditemukan 2 dokumen yang sesuai dengan query
Henry Artajaya
"Representasi dokumen sebagai vektor GLSA pada beberapa percobaan seperti uji sinonim, klasifikasi dokumen, dan clustering terbukti mampu menghasilkan tingkat akurasi yang lebih baik daripada sistem sejenis yang berbasis algoritma LSA akan tetapi GLSA belum pernah diujikan pada sistem penilai esay otomatis. Percobaan ini meneliti pengaruh implementasi GLSA pada sistem penilai esay otomatis dan perbandingan unjuk kerjanya dengan sistem penilai esay otomatis berbasis LSA. Unjuk kerja sistem penilai esai otomatis berbasis GLSA lebih unggul daripada sistem berbasis LSA. Dari 60 kali pengujian, GLSA menghasilkan nilai yang lebih akurat pada 47 kali pengujian atau 78,3% total pengujian sedangkan LSA hanya unggul pada 9 kali pengujian atau 15% total pengujian dan sisanya 4 kali pengujian atau 6,7% total pengujian menghasilkan nilai dengan tingkat akurasi yang sama. Nilai Pearson Product Moment Correlation pada percobaan menggunakan sistem LSA 0.57775-0.85868 sedangkan pada GLSA sebesar 0.73335-0.76971. Hal ini mengindikasikan bahwa sistem berbasis LSA dan GLSA yang diujikan layak pakai karena memiliki performa yang sama baiknya dengan performa yang dilakukan oleh manusia. Ditinjau dari waktu proses yang dibutuhkan, LSA unggul pada soal 1 dan 2 dengan rataan 0,07466 detik dan 0,2935 detik sedangkan pada GLSA rataan waktu proses soal 1 dan 2 sebesar 1,32329 detik dan 17,3641 detik. Waktu proses yang dibutuhkan sistem penilai esai otomatis berbasis GLSA lebih lama dibandingkan dengan LSA. Akan tetapi karena GLSA menunjukkan kinerja yang amat baik, amat dipercaya bahwa manfaatnya lebih besar daripada biaya komputasi.
Document representation as GLSA vectors were shown to improve performance on different tasks such as synonymy test, document classification, and clustering compared to LSA based systems, however GLSA performance has never been tested on automated essay grading system. This experiment examines the effect of GLSA implementation on automated essay grading system and evaluates its performance compared to LSA based system. GLSA performance was shown to outperform LSA based automated essay grading system. From 60 samples, GLSA outperform LSA 47 times (78,3%), LSA outperform GLSA 9 times (15%), and 4 times (6,7%) resulted the same score accuracy. Pearson Product Moment Correlation Value resulted from the experiment using LSA based system is 0.57775-0.85868 and 0.73335-0.76971 for GLSA based system. This result incidates LSA and GLSA based system used on this experiment are ready to be used as human rater replacement because both of the system deliver similar performance with human rater. Processing time of LSA based system is faster with average processing time consecutively 0,07466 second and 0,2935 second compared to GLSA consecutively 1,32329 second and 17,3641 second. GLSA requires more processing time than LSA based system because GLSA based system has more calculation steps than LSA. However GLSA showed better performance, therefore it's believed that its benefits outweigh the computational cost."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42481
UI - Skripsi Open Universitas Indonesia Library
Dealitha Winata
"Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia telah mengembangkan Sistem Penilaian Esai Otomatis Simple-O berbasis Latent Semantic Analysis LSA sejak tahun 2007. Pada awalnya, Simple-O hanya dikembangkan untuk mengoreksi ujian esai berbahasa Indonesia, namun kali ini dikembangkan untuk mengoreksi ujian esai berbahasa Jepang. Simple-O hanya menggunakan algoritma LSA saat pertama kali dikembangkan. Beberapa tahun setelahnya, Simple-O mulai dikembangkan menggunakan algoritma LSA dilengkapi dengan algoritma klasifikasi seperti Learning Vector Quantization LVQ dan Support Vector Machine SVM. Simple-O juga mulai dikembangkan menggunakan algoritma lain seperti Winnowing.
Pada skripsi ini akan dijelaskan tentang pengembangan sistem penilaian esai otomatis Simple-O untuk ujian esai berbahasa Jepang menggunakan algoritma LSA untuk pemrosesan kata, serta menggunakan algoritma Support Vector Machine SVM untuk klasifikasinya. Algoritma SVM merupakan suatu algoritma pembelajaran yang berfungsi untuk menentukan bidang pemisah hyperplane dari sekumpulan data baik yang linearly separable, maupun yang non-linearly separable. SVM akan memisahkan data nilai hasil proses LSA ke dalam dua kelas untuk variasi kelas pertama, dan akan memisahkan data nilai hasil proses LSA ke dalam sembilan kelas untuk variasi kelas kedua. Jenis kernel dan parameter juga divariasikan untuk menemukan jenis kernel, parameter, dan jumlah kelas yang tepat. Hasil dari analisis dan pengujian yang telah dilakukan, apabila menggunakan jenis kernel, parameter, dan variasi kelas yang tepat, SVM mampu menghasilkan akurasi sebesar 100.
Department of Electrical Engineering in Universitas Indonesia has developed an automatic essay grading system Simple O based on Latent Semantic Analysis LSA since 2007. At first, Simple O was developed for giving score to essay with Indonesian language, but now Simple O is developed for giving score to essay with Japanese language. Simple O used to be developed using LSA algorithm only. A few years later, Simple O began to be developed using LSA algorithm and some classification algorithm such as Learning Vector Quantization LVQ and Support Vector Machine SVM. Simple O began to be developed using another algorithm too such as Winnowing algorithm.This thesis will explain about development of automatic essay grading system Simple O for essay with Japanese language using LSA as word processing algorithm, and SVM as classification algorithm. SVM is a learning algorithm for determining hyperplane from set of linearly separable data as well as non linearly separable data. SVM will separate output data of LSA into two class for the first class variation and will separate output data of LSA into nine class for the second class variation. Kernel type and parameter will be varied too to find the right kernel, parameter, and number of classes. From the results of analysis and test that have been done, SVM is able to obtain accuracy of 100 if the system uses the right kernel, parameter, and number of classes."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library