Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Vincent Suryakim
"Di era perdagangan elektronik yang berkembang pesat, mengoptimalkan infrastruktur untuk skalabilitas dan efisiensi menjadi hal yang sangat penting. Untuk memenuhi kebutuhan ini, sebuah sistem yang disebut Kubernetes diperkenalkan dan menjadi standar de facto untuk manajemen dan penskalaan aplikasi yang efisien karena dapat memfasilitasi orkestrasi aplikasi terkontainerisasi dengan baik. Termotivasi oleh faktor-faktor ini, serta diciptakannya model arsitektur baru — Virtual Cluster (VC) — penelitian ini mengeksplorasi dan menganalisis efeknya dengan membandingkannya dengan model namespace-based (NS) untuk mengimplementasikan multi-tenancy di Kubernetes. Secara khusus, penelitian ini berfokus pada perbandingan kedua model tersebut untuk menentukan mana yang lebih tepat digunakan dalam konteks aplikasi e-commerce. Penelitian ini menemukan bahwa model NS yang diterapkan pada Google Compute Engine (GCE) melalui K3s memiliki kinerja yang lebih baik dibandingkan dengan model VC, yang juga diterapkan pada GCE, dan model NS yang diterapkan pada Google Kubernetes Engine (GKE). Selain itu, ditemukan juga bahwa pada tenant yang diuji coba dengan load reguler, terdapat tren penurunan throughput seiring meningkatnya jumlah pengguna pada tenant yang memonopoli resources, yang diamati bersamaan dengan penurunan response time. Oleh karena itu, disarankan bagi penyedia layanan e-commerce yang ingin mengimplementasikan aplikasi single cluster multi-tenant untuk menggunakan model NS di GCE. Temuan dan hasil yang dipaparkan dalam penelitian ini diharapkan dapat digunakan sebagai panduan dalam mengimplementasikan arsitektur multi-tenant Kubernetes untuk aplikasi e-commerce.

In an era where electronic commerce is rapidly growing, optimizing infrastructure for scalability and efficiency has become paramount. To meet this need, a system called Kubernetes was introduced and has become the de facto standard for efficient management and scaling of applications as it facilitates seamless orchestration of containerized applications. Motivated by these factors, combined with the introduction of a new architectural model — the Virtual Cluster (VC) model — this study intends to explore and analyze its effects by comparing it with another model to implement multi-tenancy in Kubernetes: the namespace-based (NS) model. Specifically, this research focuses on comparing both models to determine which is more appropriate in the context of e-commerce. This study found that the NS architecture deployed on Google Compute Engine (GCE) using K3s performed better than the VC architecture, also deployed on GCE, and the NS architecture deployed on Google Kubernetes Engine (GKE). However, as for the perceivable impacts on its partnering tenant, this study found that there is a decreasing trend in throughput as the peak number of concurrent users in the monopolizing tenant increases, which is observed alongside a decrease in response time. Therefore, it is recommended for e-commerce providers looking to implement a single cluster multi-tenant application to use the NS architecture in GCE. The findings and results presented in this study are expected to be used as guidelines in implementing Kubernetes multi-tenant architectures for e-commerce applications."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lababan, Tara Mazaya
"Penelitian ini menganalisis dampak dari penggunaan Virtual Machine (VM), container, dan bare-metal terhadap performa Graphics Processing Unit (GPU) dengan memanfaatkan VM pada OpenStack Nova, container pada OpenStack Zun, dan bare-metal pada OpenStack Ironic. Metode virtualisasi GPU yang digunakan pada penelitian ini adalah GPU passthrough. Pengukuran performa GPU dilakukan dengan menggunakan aplikasi Glmark2 untuk menguji performa graphic rendering, Phoronix NAMD untuk menguji performa simulasi molekuler, dan Phoronix PyTorch untuk menguji performa training model. Hasil analisis menunjukkan bahwa penggunaan VM pada OpenStack Nova mengakibatkan penurunan performa GPU sebesar 15.5% pada Glmark2, 44.0% pada Phoronix NAMD, dan 8.4% pada Phoronix PyTorch. Penggunaan container pada Open Stack Zun mengakibatkan penurunan performa GPU sebesar 5.8% pada Glmark2 dan 19.7% pada Phoronix NAMD, tetapi tak ada perbedaan signifikan pada Phoronix PyTorch jika dibandingkan dengan physical machine (α = 0.05). Penggunaan bare-metal pada OpenStack Ironic mengakibatkan penurunan performa sebesar 1.5% pada Phoronix NAMD dan peningkatan tak signifikan sebesar -6.2% pada Phoronix PyTorch. Pengujian Glmark2 pada OpenStack Ironic dengan perlakuan yang sama seperti benchmark lainnya menunjukkan adanya penurunan performa sebesar 8.7%. Namun, perlakuan khusus pada Glmark2 OpenStack Ironic menunjukkan peningkatan performa sebesar -1.0% pada resolusi 1920x1080 jika dibandingkan dengan physical machine. Perlakuan khusus ini berupa menjalankan dummy Glmark2 dengan resolusi yang sangat rendah dan Glmark2 utama secara bersamaan. Berdasarkan hasil penelitian, dapat disimpulkan bahwa urutan computing resource dengan penurunan performa GPU yang paling minimal adalah penggunaan bare-metal OpenStack Ironic, diikuti dengan penggunaan container OpenStack Zun, dan diikuti dengan penggunaan VM OpenStack Nova.

This research analyzes the effects of Virtual Machine (VM), containers, and bare-metal usage on Graphics Processing Unit (GPU) performance, using VMs provided by OpenStack Nova, containers provided by OpenStack Zun, and bare-metal provided by OpenStack Ironic. The GPU virtualization method employed in this paper is GPU passthrough. GPU performance is measured using multiple benchmark applications, those being Glmark2 to measure graphic rendering performance, Phoronix NAMD to measure molecular simulation performance, and Phoronix PyTorch to measure training model performance. The results of our analysis shows that the usage of OpenStack Nova’s VMs causes GPU performance slowdown of up to 15.5% on Glmark2, 44.0% on Phoronix NAMD and 8.4% on Phoronix PyTorch. Using OpenStack Zun’s containers also causes GPU performance slowdowns of up to 5.8% on Glmark2 and 19.7% on Phoronix NAMD, with no significant changes on GPU performance with Phoronix PyTorch compared to the physical machine (α = 0.05). In contrast, using OpenStack Ironic’s bare-metal causes GPU performance slowdown of 1.5% on Phoronix NAMD and an insignificant increase in performance on Phoronix PyTorch by 6.2%. Meanwhile the results of the Glmark2 benchmark on OpenStack Ironic following the normal procedures shows GPU performance slowdown of up to 8.7%. However, the same Glmark2 OpenStack Ironic benchmark with a special procedure shows an increase in GPU performance of up to 1.0% on the 1920x1080 resolution compared to the physical machine. This special procedure involves running a dummy Glmark2 process with a tiny resolution in parallel with the main Glmark2 process. Based on the results, we can conclude that the hierarchy of computing resources in terms of minimal GPU performance slowdown starts with the usage of OpenStack Ironic’s bare-metal, followed by the usage of OpenStack Zun’s containers, and lastly the usage of OpenStack Nova’s VMs."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pradipta Davi Valendra
"Penelitian ini menganalisis dampak dari penggunaan Virtual Machine (VM), container, dan bare-metal terhadap performa Graphics Processing Unit (GPU) dengan memanfaatkan VM pada OpenStack Nova, container pada OpenStack Zun, dan bare-metal pada OpenStack Ironic. Metode virtualisasi GPU yang digunakan pada penelitian ini adalah GPU passthrough. Pengukuran performa GPU dilakukan dengan menggunakan aplikasi Glmark2 untuk menguji performa graphic rendering, Phoronix NAMD untuk menguji performa simulasi molekuler, dan Phoronix PyTorch untuk menguji performa training model. Hasil analisis menunjukkan bahwa penggunaan VM pada OpenStack Nova mengakibatkan penurunan performa GPU sebesar 15.5% pada Glmark2, 44.0% pada Phoronix NAMD, dan 8.4% pada Phoronix PyTorch. Penggunaan container pada Open Stack Zun mengakibatkan penurunan performa GPU sebesar 5.8% pada Glmark2 dan 19.7% pada Phoronix NAMD, tetapi tak ada perbedaan signifikan pada Phoronix PyTorch jika dibandingkan dengan physical machine (α = 0.05). Penggunaan bare-metal pada OpenStack Ironic mengakibatkan penurunan performa sebesar 1.5% pada Phoronix NAMD dan peningkatan tak signifikan sebesar -6.2% pada Phoronix PyTorch. Pengujian Glmark2 pada OpenStack Ironic dengan perlakuan yang sama seperti benchmark lainnya menunjukkan adanya penurunan performa sebesar 8.7%. Namun, perlakuan khusus pada Glmark2 OpenStack Ironic menunjukkan peningkatan performa sebesar -1.0% pada resolusi 1920x1080 jika dibandingkan dengan physical machine. Perlakuan khusus ini berupa menjalankan dummy Glmark2 dengan resolusi yang sangat rendah dan Glmark2 utama secara bersamaan. Berdasarkan hasil penelitian, dapat disimpulkan bahwa urutan computing resource dengan penurunan performa GPU yang paling minimal adalah penggunaan bare-metal OpenStack Ironic, diikuti dengan penggunaan container OpenStack Zun, dan diikuti dengan penggunaan VM OpenStack Nova.

This research analyzes the effects of Virtual Machine (VM), containers, and bare-metal usage on Graphics Processing Unit (GPU) performance, using VMs provided by OpenStack Nova, containers provided by OpenStack Zun, and bare-metal provided by OpenStack Ironic. The GPU virtualization method employed in this paper is GPU passthrough. GPU performance is measured using multiple benchmark applications, those being Glmark2 to measure graphic rendering performance, Phoronix NAMD to measure molecular simulation performance, and Phoronix PyTorch to measure training model performance. The results of our analysis shows that the usage of OpenStack Nova’s VMs causes GPU performance slowdown of up to 15.5% on Glmark2, 44.0% on Phoronix NAMD and 8.4% on Phoronix PyTorch. Using OpenStack Zun’s containers also causes GPU performance slowdowns of up to 5.8% on Glmark2 and 19.7% on Phoronix NAMD, with no significant changes on GPU performance with Phoronix PyTorch compared to the physical machine (α = 0.05). In contrast, using OpenStack Ironic’s bare-metal causes GPU performance slowdown of 1.5% on Phoronix NAMD and an insignificant increase in performance on Phoronix PyTorch by 6.2%. Meanwhile the results of the Glmark2 benchmark on OpenStack Ironic following the normal procedures shows GPU performance slowdown of up to 8.7%. However, the same Glmark2 OpenStack Ironic benchmark with a special procedure shows an increase in GPU performance of up to 1.0% on the 1920x1080 resolution compared to the physical machine. This special procedure involves running a dummy Glmark2 process with a tiny resolution in parallel with the main Glmark2 process. Based on the results, we can conclude that the hierarchy of computing resources in terms of minimal GPU performance slowdown starts with the usage of OpenStack Ironic’s bare-metal, followed by the usage of OpenStack Zun’s containers, and lastly the usage of OpenStack Nova’s VMs."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Immanuel
"Penelitian ini menganalisis dampak dari penggunaan Virtual Machine (VM), container, dan bare-metal terhadap performa Graphics Processing Unit (GPU) dengan memanfaatkan VM pada OpenStack Nova, container pada OpenStack Zun, dan bare-metal pada OpenStack Ironic. Metode virtualisasi GPU yang digunakan pada penelitian ini adalah GPU passthrough. Pengukuran performa GPU dilakukan dengan menggunakan aplikasi Glmark2 untuk menguji performa graphic rendering, Phoronix NAMD untuk menguji performa simulasi molekuler, dan Phoronix PyTorch untuk menguji performa training model. Hasil analisis menunjukkan bahwa penggunaan VM pada OpenStack Nova mengakibatkan penurunan performa GPU sebesar 15.5% pada Glmark2, 44.0% pada Phoronix NAMD, dan 8.4% pada Phoronix PyTorch. Penggunaan container pada Open Stack Zun mengakibatkan penurunan performa GPU sebesar 5.8% pada Glmark2 dan 19.7% pada Phoronix NAMD, tetapi tak ada perbedaan signifikan pada Phoronix PyTorch jika dibandingkan dengan physical machine (α = 0.05). Penggunaan bare-metal pada OpenStack Ironic mengakibatkan penurunan performa sebesar 1.5% pada Phoronix NAMD dan peningkatan tak signifikan sebesar -6.2% pada Phoronix PyTorch. Pengujian Glmark2 pada OpenStack Ironic dengan perlakuan yang sama seperti benchmark lainnya menunjukkan adanya penurunan performa sebesar 8.7%. Namun, perlakuan khusus pada Glmark2 OpenStack Ironic menunjukkan peningkatan performa sebesar -1.0% pada resolusi 1920x1080 jika dibandingkan dengan physical machine. Perlakuan khusus ini berupa menjalankan dummy Glmark2 dengan resolusi yang sangat rendah dan Glmark2 utama secara bersamaan. Berdasarkan hasil penelitian, dapat disimpulkan bahwa urutan computing resource dengan penurunan performa GPU yang paling minimal adalah penggunaan bare-metal OpenStack Ironic, diikuti dengan penggunaan container OpenStack Zun, dan diikuti dengan penggunaan VM OpenStack Nova.

This research analyzes the effects of Virtual Machine (VM), containers, and bare-metal usage on Graphics Processing Unit (GPU) performance, using VMs provided by OpenStack Nova, containers provided by OpenStack Zun, and bare-metal provided by OpenStack Ironic. The GPU virtualization method employed in this paper is GPU passthrough. GPU performance is measured using multiple benchmark applications, those being Glmark2 to measure graphic rendering performance, Phoronix NAMD to measure molecular simulation performance, and Phoronix PyTorch to measure training model performance. The results of our analysis shows that the usage of OpenStack Nova’s VMs causes GPU performance slowdown of up to 15.5% on Glmark2, 44.0% on Phoronix NAMD and 8.4% on Phoronix PyTorch. Using OpenStack Zun’s containers also causes GPU performance slowdowns of up to 5.8% on Glmark2 and 19.7% on Phoronix NAMD, with no significant changes on GPU performance with Phoronix PyTorch compared to the physical machine (α = 0.05). In contrast, using OpenStack Ironic’s bare-metal causes GPU performance slowdown of 1.5% on Phoronix NAMD and an insignificant increase in performance on Phoronix PyTorch by 6.2%. Meanwhile the results of the Glmark2 benchmark on OpenStack Ironic following the normal procedures shows GPU performance slowdown of up to 8.7%. However, the same Glmark2 OpenStack Ironic benchmark with a special procedure shows an increase in GPU performance of up to 1.0% on the 1920x1080 resolution compared to the physical machine. This special procedure involves running a dummy Glmark2 process with a tiny resolution in parallel with the main Glmark2 process. Based on the results, we can conclude that the hierarchy of computing resources in terms of minimal GPU performance slowdown starts with the usage of OpenStack Ironic’s bare-metal, followed by the usage of OpenStack Zun’s containers, and lastly the usage of OpenStack Nova’s VMs."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Denny Johannes Hasea
"Agen customer service tidak dapat beroperasi 24 jam sehari, sehingga diperlukan sebuah program untuk mengatasi masalah ini, salah satunya adalah chatbot. Sejak munculnya makalah "Attention is All You Need", kualitas chatbot telah meningkat secara signifikan. Salah satu kegunaan utama chatbot adalah untuk menyediakan customer service 24 jam, sehingga memungkinkan agen customer service untuk fokus pada pertanyaan yang lebih kompleks. Untuk mengembangkan chatbot yang efektif yang dapat menjawab pertanyaan pelanggan, diperlukan data percakapan antara pelanggan dan agen, serta model pembelajaran mesin yang dilatih pada data ini. Dalam penelitian ini, eksperimen dilakukan menggunakan empat model yang berbeda: T5, BART, DistilGPT2, dan GPT2, untuk menentukan model terbaik yang dapat memberikan jawaban yang relevan kepada pelanggan. Model-model ini dievaluasi menggunakan metrik BLEU dan ROUGE untuk menentukan kualitas terbaik. Hasil eksperimen menunjukkan bahwa GPT2 adalah model terbaik untuk keperluan customer service. Untuk membuat model ini dapat diakses oleh pelanggan, diperlukan sebuah aplikasi web. Aplikasi web ini dikembangkan dengan menguji tiga frontend framework: Next.js, Vue.js, dan Angular, serta tiga backend framework: FastAPI, Flask, dan Django, untuk menentukan kombinasi yang memberikan respons tercepat. Frontend framework dievaluasi menggunakan Google Lighthouse. Backend framework dievaluasi menggunakan metrik Average Response Time. Hasil eksperimen menunjukkan bahwa Next.js adalah frontend framework terbaik dan FastAPI adalah backend framework terbaik. Untuk menangani sejumlah besar pelanggan secara bersamaan, chatbot ini memerlukan infrastruktur yang memungkinkan penggunaan paralel. Infrastruktur disediakan menggunakan Terraform untuk mengurangi langkah-langkah pengembangan dan memfasilitasi replikasi infrastruktur yang dikembangkan. Infrastruktur yang diuji adalah mikroservis dan monolitik, keduanya dapat diskalakan. Infrastruktur ini dievaluasi menggunakan metrik waktu respons dan tingkat kegagalan. Hasil eksperimen menunjukkan bahwa arsitektur monolitik cukup untuk menangani chatbot.

Customer service agents cannot operate 24 hours a day, thus a program is needed to address this issue, one of which is a chatbot. Since the emergence of the paper "Attention is All You Need", the quality of chatbots has improved significantly. One of the main uses of chatbots is to provide 24-hour customer service, thus allowing customer service agents to focus on more complex inquiries. To develop an effective chatbot that can answer customer questions, conversation data between customers and agents, as well as a machine learning model trained on this data, are required. In this research, experiments were conducted using four different models: T5, BART, DistilGPT2, and GPT2, to determine the best model that can provide relevant answers to customers. These models were evaluated using BLEU and ROUGE metrics to determine the best quality. The experimental results showed that GPT2 is the best model for customer service purposes. To make this model accessible to customers, a website is required. This website was developed by testing three frontend frameworks: Next.js, Vue.js, and Angular, and three backend frameworks: FastAPI, Flask, and Django, to determine the combination that provides the fastest response. The frontend frameworks were evaluated using Google Lighthouse. The backend frameworks were evaluated using the Average Response Time metric. The experimental results showed that Next.js is the best frontend framework and FastAPI is the best backend framework. To handle a large number of customers simultaneously, this chatbot requires infrastructure that allows parallel usage. Infrastructure is provided using Terraform to reduce development steps and facilitate the replication of developed infrastructure. The tested infrastructures are microservices and monolithic, both of which are scalable. This infrastructure is evaluated using response time and failure rate metrics. The experimental results indicate that the monolithic architecture is sufficient for handling a chatbot."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adrian Hakim Utomo
"Agen customer service tidak dapat beroperasi 24 jam sehari, sehingga diperlukan sebuah program untuk mengatasi masalah ini, salah satunya adalah chatbot. Sejak munculnya makalah ”Attention is All You Need”, kualitas chatbot telah meningkat secara signifikan. Salah satu kegunaan utama chatbot adalah untuk menyediakan customer service 24 jam, sehingga memungkinkan agen customer service untuk fokus pada pertanyaan yang lebih kompleks. Untuk mengembangkan chatbot yang efektif yang dapat menjawab pertanyaan pelanggan, diperlukan data percakapan antara pelanggan dan agen, serta model pembelajaran mesin yang dilatih pada data ini. Dalam penelitian ini, eksperimen dilakukan menggunakan empat model yang berbeda: T5, BART, DistilGPT2, dan GPT2, untuk menentukan model terbaik yang dapat memberikan jawaban yang relevan kepada pelanggan. Model-model ini dievaluasi menggunakan metrik BLEU dan ROUGE untuk menentukan kualitas terbaik. Hasil eksperimen menunjukkan bahwa GPT2 adalah model terbaik untuk keperluan customer service. Untuk membuat model ini dapat diakses oleh pelanggan, diperlukan sebuah aplikasi web. Aplikasi web ini dikembangkan dengan menguji tiga frontend framework: Next.js, Vue.js, dan Angular, serta tiga backend framework: FastAPI, Flask, dan Django, untuk menentukan kombinasi yang memberikan respons tercepat. Frontend framework dievaluasi menggunakan Google Lighthouse. Backend framework dievaluasi menggunakan metrik Average Response Time. Hasil eksperimen menunjukkan bahwa Next.js adalah frontend framework terbaik dan FastAPI adalah backend framework terbaik. Untuk menangani sejumlah besar pelanggan secara bersamaan, chatbot ini memerlukan infrastruktur yang memungkinkan penggunaan paralel. Infrastruktur disediakan menggunakan Terraform untuk mengurangi langkah-langkah pengembangan dan memfasilitasi replikasi infrastruktur yang dikembangkan. Infrastruktur yang diuji adalah mikroservis dan monolitik, keduanya dapat diskalakan. Infrastruktur ini dievaluasi menggunakan metrik waktu respons dan tingkat kegagalan. Hasil eksperimen menunjukkan bahwa arsitektur monolitik cukup untuk menangani chatbot.

Customer service agents cannot operate 24 hours a day, thus a program is needed to address this issue, one of which is a chatbot. Since the emergence of the paper ”Attention is All You Need”, the quality of chatbots has improved significantly. One of the main uses of chatbots is to provide 24-hour customer service, thus allowing customer service agents to focus on more complex inquiries. To develop an effective chatbot that can answer customer questions, conversation data between customers and agents, as well as a machine learning model trained on this data, are required. In this research, experiments were conducted using four different models: T5, BART, DistilGPT2, and GPT2, to determine the best model that can provide relevant answers to customers. These models were evaluated using BLEU and ROUGE metrics to determine the best quality. The experimental results showed that GPT2 is the best model for customer service purposes. To make this model accessible to customers, a website is required. This website was developed by testing three frontend frameworks: Next.js, Vue.js, and Angular, and three backend frameworks: FastAPI, Flask, and Django, to determine the combination that provides the fastest response. The frontend frameworks were evaluated using Google Lighthouse. The backend frameworks were evaluated using the Average Response Time metric. The experimental results showed that Next.js is the best frontend framework and FastAPI is the best backend framework. To handle a large number of customers simultaneously, this chatbot requires infrastructure that allows parallel usage. Infrastructure is provided using Terraform to reduce development steps and facilitate the replication of developed infrastructure. The tested infrastructures are microservices and monolithic, both of which are scalable. This infrastructure is evaluated using response time and failure rate metrics. The experimental results indicate that the monolithic architecture is sufficient for handling a chatbot."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rifqi Praditya
"Agen customer service tidak dapat beroperasi 24 jam sehari, sehingga diperlukan sebuah program untuk mengatasi masalah ini, salah satunya adalah chatbot. Sejak munculnya makalah "Attention is All You Need", kualitas chatbot telah meningkat secara signifikan. Salah satu kegunaan utama chatbot adalah untuk menyediakan customer service 24 jam, sehingga memungkinkan agen customer service untuk fokus pada pertanyaan yang lebih kompleks. Untuk mengembangkan chatbot yang efektif yang dapat menjawab pertanyaan pelanggan, diperlukan data percakapan antara pelanggan dan agen, serta model pembelajaran mesin yang dilatih pada data ini. Dalam penelitian ini, eksperimen dilakukan menggunakan empat model yang berbeda: T5, BART, DistilGPT2, dan GPT2, untuk menentukan model terbaik yang dapat memberikan jawaban yang relevan kepada pelanggan. Model-model ini dievaluasi menggunakan metrik BLEU dan ROUGE untuk menentukan kualitas terbaik. Hasil eksperimen menunjukkan bahwa GPT2 adalah model terbaik untuk keperluan customer service. Untuk membuat model ini dapat diakses oleh pelanggan, diperlukan sebuah aplikasi web. Aplikasi web ini dikembangkan dengan menguji tiga frontend framework: Next.js, Vue.js, dan Angular, serta tiga backend framework: FastAPI, Flask, dan Django, untuk menentukan kombinasi yang memberikan respons tercepat. Frontend framework dievaluasi menggunakan Google Lighthouse. Backend framework dievaluasi menggunakan metrik Average Response Time. Hasil eksperimen menunjukkan bahwa Next.js adalah frontend framework terbaik dan FastAPI adalah backend framework terbaik. Untuk menangani sejumlah besar pelanggan secara bersamaan, chatbot ini memerlukan infrastruktur yang memungkinkan penggunaan paralel. Infrastruktur disediakan menggunakan Terraform untuk mengurangi langkah-langkah pengembangan dan memfasilitasi replikasi infrastruktur yang dikembangkan. Infrastruktur yang diuji adalah mikroservis dan monolitik, keduanya dapat diskalakan. Infrastruktur ini dievaluasi menggunakan metrik waktu respons dan tingkat kegagalan. Hasil eksperimen menunjukkan bahwa arsitektur monolitik cukup untuk menangani chatbot.

Customer service agents cannot operate 24 hours a day, thus a program is needed to address this issue, one of which is a chatbot. Since the emergence of the paper "Attention is All You Need", the quality of chatbots has improved significantly. One of the main uses of chatbots is to provide 24-hour customer service, thus allowing customer service agents to focus on more complex inquiries. To develop an effective chatbot that can answer customer questions, conversation data between customers and agents, as well as a machine learning model trained on this data, are required. In this research, experiments were conducted using four different models: T5, BART, DistilGPT2, and GPT2, to determine the best model that can provide relevant answers to customers. These models were evaluated using BLEU and ROUGE metrics to determine the best quality. The experimental results showed that GPT2 is the best model for customer service purposes. To make this model accessible to customers, a website is required. This website was developed by testing three frontend frameworks: Next.js, Vue.js, and Angular, and three backend frameworks: FastAPI, Flask, and Django, to determine the combination that provides the fastest response. The frontend frameworks were evaluated using Google Lighthouse. The backend frameworks were evaluated using the Average Response Time metric. The experimental results showed that Next.js is the best frontend framework and FastAPI is the best backend framework. To handle a large number of customers simultaneously, this chatbot requires infrastructure that allows parallel usage. Infrastructure is provided using Terraform to reduce development steps and facilitate the replication of developed infrastructure. The tested infrastructures are microservices and monolithic, both of which are scalable. This infrastructure is evaluated using response time and failure rate metrics. The experimental results indicate that the monolithic architecture is sufficient for handling a chatbot."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library