Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 21 dokumen yang sesuai dengan query
cover
Wara Dyah Pita Rengga
"Unsaturated Polyester Resin (UPR) mempunyai sifat elektrik, kimia, dan mekanik yang baik. UPR dapat dipakai dalam beberapa aplikasi dan digunakan untuk berbagai peralatan, misalnya pipa air, kontainer, tangki penyimpanan, gedung, komponen otomotif, dan lambung kapal. Perilaku Korosi Glass Fiber-Reinforced Plastic (GRP) UPR dalam lingkungan basa, khususnya KOH dan NaOH, perlu diselidiki. UPR yang digunakan adalah Yukalac 150 HRBQTN jenis isophthalatic (UPR-iso). Untuk mengetahui perilaku GRP (UPR-iso) tersebut, spesimen direndam dalam larutan KOH dan NaOH.
Penentuan ketahanan korosi GRP (UPR-iso) mengacu pada ASTM C 581-94. Dalam penelitian, diamati perubahan hardness, ketebalan, berat, dan retensi Flexural Strength dan retensi Flexural Modulus. Selain itu juga analisis dengan uji FTIR, SEM-EDX.
Dalam penelitian diperlukan pembuatan GRP(UPR-iso), dimana fiberglass yang digunakan adalah E-glass sebanyak 2 lapis dan C-glass sebanyak 2 lapis. Setelah itu laminat tersebut dipotong menjadi spesimen_ Pada tepi samping spesimen dilapisi vinyl ester Spesimen tersebut direndam dalam larutan 10%, 25%, 50% berat KOH dan NaOH pada suhu 50°C. Spesimen direndam dalam tabung reaksi dan dipanaskan pada waterbath. Interval waktu yang digunakan adalah 1, 2, 3, 6, 18, 29, 39 hail.
Hasil penelitian menunjukkan bahwa seat mekanik (hardness, flexural strength, flexural modulus) GRP(UPR-iso) menurun dan sifat fisik (tebal dan berat) meningkat terhadap waktu. Pada lingkungan KOH, semakin besar konsentrasi penurunan sifat mekanik dan penambahan sifat fisik semakin besar. Sedangkan dalam lingkungan NaOH, pads konsentrasi 25%, penurunan seat mekanik dan penambahan seat fisik, lebih tinggi dibandingkan 10% dan 50%. Semakin lama waktu perendaman dan semakin besar konsentrasi, degradasi fisik dan kimia lebih cepat. Pengecualian pada 50% NaOH, mobilitasnya sudah mulai menurun dibandingkan 25% dan 10%, sehingga proses degradasi lambat dan sedikit.
Perbandingan antara penyerangan KOH dan NaOH terhadap GRP(UPR-iso) adalah lebih tinggi NaOH pada konsentrasi 10% dan 25%, sedangkan pada konsentrasi 50% lebih tinggi KOH. Hal ini dikarenakan BM NaK. Semakin besar konsentrasi, pendegradasian semakin cepat. Pengecualian pada 50% NaOH, mobilitasnya sudah menurun jika dibandingkan 50% KOH.
Pada GRP(UPR-iso) terjadi perubahan warna dari merah muda ke kuning/coklat, dan tidak transparan. Pada spesimen yang telah direndam terbentuk lapisan terkorosi pada bagian permukaan (corroded layer forming).
Mekanisme terjadinya korosi pada GRP(UPR-iso) dalam larutan basa adalah degradasi fisik dan degradasi kimia. Degradasi fisik adalah proses absorbsVdifusi larutan basa ke dalam GRP(UPR-iso) dan terjadinya proses osmosis dalam void. Sedangkan degradasi kimia adalah terjadinya berkurang atau hilangnya gugus ester karena reaksi hidrolisis oleh basa menjadi anion karboksilat dan alkohol.

Unsaturated polyester resin (UPR) has good electrical, chemical and mechanical properties. UPR can be used in various applications and equipments, such as water pipes, containers, storage tanks, buildings, automotive components, and ship hulls. The corrosion behavior of glass-fiber reinforced plastic (GRP) UPR in alkaline environment, especially KOH and NaOH, will be observed. The UPR used is Yukalac 150 HRBQTN, an isophthalatic UPR_ The specimens will be submerged in KOH and NaOH solutions to find out about GRP (UPR-iso) corrosion behavior.
ASTM C 581-94 is used to determine the GRP (UPR-iso) corrosion resistance. The observed parameters are changes in hardness, thickness, weight, flexural strength retention, and flexural modulus retention. Additional analysis is done with FTIR, SEM-EDX tests.
The GRP (UPR-iso) is created by using 2 layers of E-glass and 2 layers of C-glass, cut into specimens and coated with vinyl ester. The specimens are then submerged in test tubes filled with 10%, 25% and 50% weight KOH and NaOH solutions. The test tubes and the specimens are continuously heated at 50°C using water bath. The observed time intervals are 1, 2, 3, 6, 18, 29 and 39 days.
The results showed that GRP (UPR-iso) mechanical properties (hardness, flexural strength, flexural modulus) weakened the longer it stays in the alkaline solutions while its thickness and weight increased. In KOH solutions, higher concentrations lead to larger weakening of mechanical properties and larger increase in thickness and weight. In NaOH solutions however, it was the 25% solution and not the 50% solution, that exhibited the biggest weakening of mechanical properties and highest increase in thickness and weight. Overall, increasing concentrations and increasing time spent submerged will accelerate the physical and chemical degradation of GRP (UPR-iso). The exception is 50% NaOH solution. At this concentration, the solution's mobility decreased compared to 25% and 10% solutions which slows down the degradation.
When comparing degradations in KOH and NaOH solutions with similar concentration, NaOH caused more degradation at 10% and 25% solutions, white KOH caused more degradations at 50% solution. This is due to Sodium having higher molecular weight than Potassium, thus making Sodium's molarity bigger than Potassium's. Larger alkaline concentrations caused faster degradations with the exception of 50% NaOH solution because of the drop in mobility compared with 50% KOH solution.
Another observed difference is the color change from translucent pink to yellow/brownish. The submerged specimens have corroded layer forming on the surface.
The corrosion mechanism of GRP (UPR-iso) in alkaline solution is by physical and chemical degradation. Physical degradation is the process of absorption/diffusion of alkaline solution into GRP (UPR-iso) and the occurrence of osmosis in the void. While chemical degradation is the decrease or loss of esters because of hydrolysis by alkaline into alcohols and carboxylate anions.
"
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14719
UI - Tesis Membership  Universitas Indonesia Library
cover
Alia Badra Pitaloka
"Fiber Reinforced Plastic (FRP) sudah banyak digunakan di berbagai bidang, seperti konstruksi bangunan, industri perkapalan, dan berbagai saluran pipa (pipeline). Penggunaan FRP sebagai bahan konstruksi di industri seperti tangki penyimpan, pipa, dan lain-lain sudah mulai berkembang. Sebagai bahan yang lebih tahan korosif dibandingkan dengan logam, maka FRP berpotensi untuk dipakai sebagai bahan konstruksi tangki penampung zat-zat kimia korosif, seperti asam nitrat dan hidrogen peroksida, yang pada saat ini masih banyak menggunakan logam.
Dalam penelitian ini dilakukan pengamatan terhadap korosi glass fiber-reinforced unsaturated polyester resin jenis orto (UPR-fiber glass) dengan gelcoat di dalam larutan asam nitrat (HNO3) 40%, 50%, dan 60% dan hidrogen peroksida (H2O2) 10%, 20%, dan 30%. Perendaman dilakukan pada suhu 50°C. Setelah spesimen direndam di dalam larutan selama waktu tertentu, dilakukan analisis terhadap larutan dan spesimen yang tersisa.
U PR-fiber glass yang telah direndam di dalam larutan asam nitrat dan hidrogen Feroksida mengalami penurunan sifat mekanik, yang meliputi kekerasan (Barcol), flexural strength, dan flexural modulus. Pada awal perendaman terjadi penambahan berat spesimen sampai waktu tertentu dan kemudian mengalami penurunan. Selain itu larutan perendam juga mengalami penurunan konsentrasi. Secara visual, UPR fiber glass mengalami perubahan warna. Di dalam larutan HNO3, sisi UPR-fiber glass dengan gelcoat berubah warna dari biru menjadi hijau muda, sementara sisi U PR-fiber glass tanpa gelcoat berubah dari Bening menjadi kuning. Di dalam larutan H2O2, sisi gelcoat mengalami perubahan warna dari biru menjadi biru muda sampai putih kebiruan sementara pada sisi UPR-fiber glass tanpa gelcoat terlihat garis-garis putih yang tak lain adalah serat galas. Dengan menggunakan SEM, dapat dilihat kerusakan struktur fisik spesimen yang telah direndam di dalam larutan HNO3 dan H2O2.
Dengan menggunakan FT-IR, dapat diperkirakan reaksi yang terjadi pada UPR-fiber glass di dalam HNO3 adalah reaksi hidrolisis gugus ester menjadi karboksitat dan alkohol, reaksi oksidasi gugus alkohol menjadi asam karboksitat dan keton, dan reaksi pembentukan alkil nitrat. Sementara pada UPR-fiber glass di dalam H2O2 dapat diperkirakan terjadi reaksi oksidasi alkohol yang menghasilkan senyawa karboksilat, aldehid dan keton.

Fiber Reinforced Plastics (FRP) has been used in a wide range of applications such as building construction, shipbuilding industries, and various pipelines. The using of FRP as a construction material in industries, such as storage and pipes, has been developing. FRP as a material which has more corrosive resistant than metal, has a potential usage in industrial application, especially in the implementation of FRP for nitric acid and hydrogen peroxide environment.
This research is to observe corrosion behavior of glass fiber-reinforced orthophthalic unsaturated polyester resin with gel coat in nitric acid (HNO3) and hydrogen peroxide (H202). The concentration of HNO3 and H2O2 are [40%, 50%, and 60%] and [10%, 20%, and 30%], respectively, the immersion temperature was 50°C. After the specimens are immersed in the solution for a certain length of time, the analysis of the remaining solution and the specimen was performed.
UPR-fiber glass which has been immersed in the nitric acid and hydrogen peroxide solutions underwent a decrease of mechanical properties. These mechanical properties consist of hardness (Barcol), flexural strength, and flexural modulus. On the beginning of the immersion, the weight specimen was gained for a certain time, and then gradually decreased. The immersion solution concentration was decrease as well. By visual observation, the color of UPR was changed. in nitric acid solution, the side of UPR with gel coat turned from blue into light green. In the same condition, the part of UPR without gel coat changed from colorless into yellow. In hydrogen peroxide solution, the side of UPR with gel coat turned from blue into light blue, and finally into bluish white. While at the other side, the fiberglass in a form of white lines was also seen. Through SEM observation, the deterioration of the specimen's physical structure after immersion in a certain time into the solution can be seen.
From infrared spectra (FTIR), it is expected that the reactions occurred to UPR in the nitric acid solution were a hydrolysis reaction of ester groups into carboxylic and alcohol, oxidation reaction of alcohol group into carboxylic acid and ketone, and the forming of nitric alkyl. Regarding the UPR in a hydrogen peroxide, it is predicted that an oxidation reaction of alcohol resulting in carboxylic, aldehyde, and ketone groups, occurred.
"
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14716
UI - Tesis Membership  Universitas Indonesia Library
cover
Erfin Yundra Febrianto
"Banyak jenis elektrolit padat yang dapat diunggulkan sebagai elektrolit padat pada system fuel cells seperti: zirkonia (ZrO2), E-alumina, thorium dan lain-lainnya. Problem utama elektrolit padat unggulan tersebut adalah dimana temperatur operasinya yang tinggi, seperti untuk zirkonia, temperatur operasi berkisar antara 600-1400°C. Sedangkan untuk thorium oksida (ThO2) temperatur operasinya berkisar antara 1000-1500°C. Bismut oksida sebagai bahan alternatif mampu beroperasi pada temperatur moderat (270-750°C) dengan nilai konduktivitas yang sebanding dengan zirkonia. Problem utama dari elektrolit padat selain bismut oksida ini adalah hanya mampu beroperasi pada temperatur diatas 500°C, sementara baik dalam riset di laboratorium maupun untuk aplikasi di industri atau yang lainnya, sering kali diperlukan fuel cell dengan temperatur operasi yang rendah (< 500°C).
Seperti telah disebutkan diatas bahwa elektrolit padat bismut oksida mampu beroperasi pada temperatur dibawah 500°C, jadi diharapkan elektrolit padat bismut oksida ini dapat menggantikan Zirkonia pada kondisi yang khusus (untuk operasi dibawah 500°C). Telah dilakukan penelitian pembuatan elektrolit padat yang mampu beroperasi pada temperatur yang lebih rendah tersebut yaitu dengan menggunakan bismut oksida sebagai bahan dasarnya, yang di doping dengan berbagai logam tambahan yaitu erbium oksida, yttrium oksida dan calsium oksida untuk menaikkan konduktivitas ionnya.
Hasil penelitian menunjukkan bahwa penambahan logam-logam tersebut dapat menaikan nilai daya hantar ion oksigen dari elektrolit padat berbasis bismuth oksida hingga mencapai 100 kalinya dan dapat beroperasi pada temperature sekitar 600-800°C. Daya hantar ion oksigen tertinggi diperoleh pada penambahan 20% calsium oksida yang disinter pada temperatur 850°C selama 7 jam yaitu sebesar 18 x 104 /ohm cm. Sedangkan elektrolit padat berbasis bismuth oksida terbaik didapatkan pada penambahan 30 % mole yttrium oksida yang disinter pada temperature 1100° C selama 1 jam dengan nilai porositas 1,415 %."
Depok: Universitas Indonesia, 2005
T16182
UI - Tesis Membership  Universitas Indonesia Library
cover
Asep Handaya Saputra
"Rompi tahan peluru merupakan perlengkapan yang sangat penting bagi TNI dan POLRI untuk meningkatkan keselamatan dan moril personel saat menjalankan tugas. Sementara pemenuhan rompi tahan peluru masih membeli dari luar negeri dengan harga sangat mahal. Hal ini mendorong Balitbang Dephan membuat panel rompi tahan peluru dari keramik dikombinasi dengan kevlar, namun disamping berat panelnya masih tinggi yaitu 9 kg, juga harga kevlar yang sangat mahal dan masih diimport. sehingga, sudah saatnya Indonesia yang kaya akan sumber daya alam memproduksi rompi tahan peluru dari bahan yang mudah didapat, harganya murah, mudah dibuat, kuat dan ramah lingkungan. Bahan yang menjadi perhatian untuk menggantikan serat sintesis adalah serat alam diantaranya serat rami dan serat abacca.
Penelitian sebelumnya meneliti tentang serat alam rami dengan variasi tiga, empat dan lima lapis dikombinasikan dengan kawat stainless steel, dari uji balistik dapat menahan peluru level I (revolver .38 special), sementara penelitian jenis serat alam yang lain meneliti tentang serat alam abacca dengan dua, tiga dan empat lapis anyaman serat abacca, dan dapat menahan peluru level I namun belum dapat menahan peluru level II (pistol 9mm).
Dalam tesis ini dilakukan penelitian komposit dari serat alam abacca dan epoksi dengan metode hand lay up, dengan variasi lima, tujuh dan sembilan lapis anyaman serat abacca, setelah diuji balistik, ternyata semua dapat menahan peluru level I, tetapi tidak dapat menahan peluru level II. Selanjutnya supaya dapat menahan peluru level II, dibuat komposit dengan menambah satu keramik pada masing-masing komposit lima, tujuh dan sembilan lapis anyaman serat abacca, setelah uji balistik semuanya dapat menahan peluru level II. Disamping panel diatas, satu keramik tanpa serat dan resin diuji balistik dengan level I dan hasilnya keramik hancur, kemudian dua keramik direkat dengan epoksi dan diuji dengan level II, hasilnya keramik hancur. Selanjutnya dilakukan analisa kerusakan serat dan peluru, perhitungan energi balistik dan estimasi biaya pembuatan rompi tahan peluru.
Dari hasil penelitian ini, menunjukkan bahwa bila digunakan komposit dari serat saja, ataupun hanya dari keramik saja, tidak dapat menahan peluru level II, namun jika digabung antara komposit lima, tujuh dan sembilan lapis anyaman serat abacca dan keramik maka akan dapat menahan peluru level II.

Bullet proof vest is very important for army and police to increase morality and personal safety during carry out of duty. While bullet proof depend vest?s demand still buying from abroad. Because of that, Balitbang Dephan make a research to obtain bullet proof vest panel from ceramic combined with Kevlar. Beside the panel is still heavy at, 9 kg and also using kevlar fiber which is very expensive. Therefore Indonesia must find out alternatives material from natural resource to substitute kevlar fiber. Bullet proof vest from material must be easy to find, strong, easy fabrication and safe. Natural fiber as a candidate of panel materials are ramie and abacca (Musa textiles).
Previous research woven ramie fiber combine with stainless steel filament mesh 16, can proof projectile from refolver .38 (type I). While another natural fiber research is woven abacca fiber with two, three and four layer, have capabilities proof projectiles for type I, but still can?t proof projectile from hand gun 9mm (type II).
This Thesis research composite panels from woven abacca fiber and epoxy with hand lay up method, variation in layer?s number of abacca woven are five, seven and nine layers. After ballistic test, all of those have capabilities proof projectiles type I, but still can?t proof from projectiles type II. The next step, to make material from combine one layer ceramic for every composite in layer?s number of abacca woven are five, seven and nine layers, after ballistic test all of those have capabilities proof projectiles from type II. Beside above panels, both one ceramic ballistic test by type I and two ceramics with resin ballistic test by type II were broken. Fiber?s and projectiles deformation, estimation of production cost and calculation energy absobtion by material composite were analized.
The results show that material able proof the bullet proof type II are five, seven and nine layers of woven abacca combined with ceramic."
Depok: Fakultas Teknik Universitas Indonesia, 2008
T21253
UI - Tesis Open  Universitas Indonesia Library
cover
Edi Iskandar
Depok: Fakultas Teknik Universitas Indonesia, 2008
T 25135
UI - Tesis Open  Universitas Indonesia Library
cover
Nada Anisa Purnamaputri
"ABSTRAK
Polusi plastik menjadi masalah lingkungan yang semakin serius dan banyak dorongan dari berbagai pihak untuk memberhentikan pemakaian plastik sekali pakai dan plastik non-biodegradable. Polyhydroxyalkanoate (PHA) adalah termoplastik biodegradable dan bioderived yang menunjukkan potensi besar sebagai pengganti untuk plastik yang selama ini digunakan dalam berbagai aplikasi. Pasar PHA saat ini memiliki pasokan yang terbatas, padahal ini adalah waktu yang tepat untuk memanfaatkan pasar plastik biodegradable dan bioderived yang berkembang ini. Fasilitas manufaktur untuk memproduksi 5000 ton per tahun PHA bioplastik dari jus tebu harus didesain. Berbagai proses pembuatan dievaluasi untuk menentukan proses yang paling cocok untuk aplikasi ini. Kultur murni Ralstonia eutropha adalah bakteri yang direkomendasikan untuk menghasilkan polimer PHA karena menghasilkan produk akhir yang banyak, stabil secara genetik, cocok untuk bahan baku sari tebu dan mampu menghasilkan PHB dan PHV, yang merupakan persyaratan ketat dalam laporan singkat proyek. Keseluruhan pabrik dibagi kedalam lima bagian terpisah: pra-pengolahan bahan baku, fermentasi, ekstraksi PHA, pemurnian dan peletisasi PHA, serta pemulihan aseton-air. Dalam tugas akhir ini, desain peralatan proses pemurnian dan peletisasi diselidiki lebih lanjut. Bagian pemurnian dan peletisasi bertujuan untuk mengendapkan PHA, mengeringkan dan membentuk produk padatan akhir sehingga menjadi produk PHA yang berbentuk pelet dengan diameter 3 mm. Dampak lingkungan telah diminimalisir semaksimal mungkin terutama dalam mencegah pelepasan aseton. Emisi debu, kebisingan, bau, dan gas buang adalah beberapa dari dampak lingkungan potensial yang diidentifikasi dan perlu dikelola secara efektif untuk mencegah kerusakan lingkungan.

ABSTRACT
Plastic pollution is becoming an increasingly serious environmental issue and there is a growing push to phase out single use and non-biodegradable plastics. Polyhydroxyalkanoate (PHA) is a biodegradable and bioderived thermoplastic that shows great potential as a cost-effective replacement to the existing plastics in a variety of applications. The market is currently supply constrained and it is an opportune time to capitalize on this expanding market. A manufacturing facility to produce 5000 tonnes per annum of PHA bioplastic from sugarcane juice is to be designed. A range of manufacturing processes were evaluated to determine the most suitable process for this application. A pure culture of Ralstonia eutropha was the recommended bacteria to produce the PHA polymers as it is high yielding, genetically stable, suited to cane juice feedstock and capable of producing both PHB and PHV, which is a strict requirement in the project brief. The overall plant was split and designed in five separate sections: feedstock pre-treatment, fermentation, PHA extraction, PHA purification and palletization, as well as acetone-water recovery. In this paper, the purification and palletisation process equipment designs are further investigated. The purification and pelletising section is responsible for precipitating the PHA, drying and forming the final solid product. Environmental impacts have been minimised as much as possible with a particular focus on preventing acetone from being discharged. Dust, noise, odor, and flue gas emissions are among some of the potential environmental impacts identified that will need to be managed effectively in order to prevent environmental harm."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dadan Nugraha
"Indonesia memiliki potensi CPO yang sangat besar. Salah satu solusi menghadapi krisis BBM serta permasalahan kualitas udara akibat emisi adalah pemanfaatan CPO sebagai bahan baku biodiesel. Telah dilakukan analisis life cycle biodiesel berbahan baku CPO di Indonesia tahun 2010 dengan model di kota Medan, Jakarta, Bandung, dan Surabaya. Analisis life cycle dibatasi pada proses transportasi CPO, produksi biodiesel, transportasi biodiesel, dan transportasi campuran biodiesel (B- 5); sehingga diperoleh data efisiensi energi life cycle dan rasio energi fosil (REF).
Untuk menghitung nilai REF dibuat tiga model: (1) transportasi CPO, produksi biodiesel, transportasi biodisel dan transportasi B-5 menggunakan bahan bakar 100% solar (B-0); (2) transportasi CPO, produksi biodiesel, transportasi biodisel dan transportasi B-5 menggunakan bahan bakar campuran 95% solar dan 5% biodiesel (B-5); dan (3) transportasi CPO, transportasi biodisel dan transportasi B-5 menggunakan bahan bakar B-5, sedangkan produksi biodiesel menggunakan 100% biodiesel (B-100).
Hasil simulasi menunjukkan bahwa efisiensi energi life cycle paling tinggi diperoleh di Bandung (33%), diikuti oleh Jakarta (32%), Medan (26%), dan Surabaya (21%). Secara keseluruhan (nasional) energi efisiensi life cycle adalah 27%. Dari ketiga model yang digunakan pada umumnya nilai REF < 1. Hal ini menunjukkan bahwa biodiesel adalah bahan bakar non renewable . Nilai REF>1 yang berarti biodiesel renewable ditunjukkan pada model 3 di wilayah Jakarta dan Bandung, masing masing 1,19 dan 1,89.

Indonesia has very big potential of Palm Oil (CPO). Use the palm oil biodiesel as fuel is a solution for fosil fuel crisis and air pollution because of emission problem.Life cycle analysis (LCA) of palm oil biodiesel in Indonesia at 2010 was studiedn with models of Medan, Jakarta, Bandung, and Surabaya s case. Scope of LCA studies are CPO transportation, biodiesel production, biodiesel transportation, and biodiesel mix (B-5); to get the energy efficiency life cycle models and fosil energy ratio (FER).
There are three models to count FER value: (1) CPO transportation, biodiesel production, biodiesel transportation and B-5 transportation process used 100% fosil fuel (B-0); (2) CPO transportation, biodiesel production, biodiesel transportation and B-5 transportation process used mixed fuel of 95% fosil diesel oil and 5% biodiesel (B-5); and (3) CPO transportation biodiesel transportation and B- 5 transportation process used B-5, biodiesel production process used 100% biodiesel fuel (B-100).
Result of simulation showed the highest energy efficiency life cycle was in Bandung (33%), followed by Jakarta (32%), Medan (26%), and Surabaya (21%). From the three models, usually FER value <1 or palm oil biodiesel is non renewable fuel. FER value >1 mean palm oil biodiesel is renewable fuel showed by third model for Jakarta and Bandung, each 1,19 and 1,89.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
T23270
UI - Tesis Open  Universitas Indonesia Library
cover
Listi Sambono
"Gas alam, seperti kebanyakan komoditas lainnya dapat disimpan selama periode yang tidak daps ditentukan. Eksplorasi, produksi dan transportasi gas alam membutuhkan waktu, dan gas al yang mencapai tujuannya tidak dapat dibutuhkan secara langsung, untuk mengatasi kekuran pasokan gas dalam kondisi dimana terdapat kegagalan pada fasilitas sumur produksi atau fasilitas jaringan pipe transmisi dan distribusi berikut fasilitasnya, periode beban puncak loading) atau penctrasi pasar, untuk itu diperlukan bantalan suplai (buffer) gas untuk menunjan kehandalan pasokan, yaitu underground gas storage.
Tujuan dari penulisan ini adalah untuk melakukan kajian teknis dan ekonomis terhadap aplikas underground storage di Indonesia khususnya Jawa Barat, dikaitkan dengan sistim jaringan pi trasmisi dan distribusi PGN-Eks Sumur gas Depleted PERTAMINA DOH-Cirebon sehin pengaturan pasokan gas dan pendistribusiannya dapat beijalan sesuai dengan keinginan kepuasan pelanggan.
Dari basil analisa perhitungan untuk kompressor didapatka Hp 165.777 ratio kompresi 1:4 reciprocating dengan kompresi adiabtic. Sedangkan untuk metering dipakai orifice 3 unit masin dngan kapasitas 200 MMscfd. Untuk dehydrasi digunakan glycol TEG, konsentrasi Lean TE 98,0 wt% dan circulation ratio 104,7 gal TEG/Ibm H2O absorbed
Dari hasil analisa perhitungan untuk pembangunan storage ini dibutuhkan biaya investas sebesar 99 Juta USD dan IRR sebesar 27,4 % margin 0,6 USD/MMBTU, NPV 71,7 Juta USD Pay back periode 5 Tabun. Tarif atau ongkos untuk storage sebesar 0,3-0,6 USD/MMBTU Dilihat dari angka - angka tersebut make pembangunan storage di Jawa Barat layak untuk dilakukan.

Natural gas, like another common commodity can be storage for unlimited time. Exploration, production, and transportation for natural gas need time and it cant be directly used to encounter the lack of gas storage, in case of malfunction of gas well site, transmission, and distribution facilities, or moreover in peak load period and market penetration. Therefore, it needs gas bufering to support storage reliability, it is underground gas storage.
Main purpose in this writing is to give technical and economic analysis for underground storage application in Indonesia, especially in West Java. In case with PGN transmission and distribution pipeline in Depleted Gas Well site in Cirebon PERTAMINA DOH-, so then gas storage management and distribution can run properly, as customer satisfaction and needs.
From result of analysis calculation for kompressor power get horse power 165.777 Hp ratio compression 1:4 type reciprocating with compression adiabtic. While for metering is used by orifice 3 unit each capacities has 200 MMscfd. For dehydration is applied by glycol TEG, concentration of lean TEG 98,0 wt% and circulation ratio 104,7 gal TEG/lbm H2O absorbed
Based on calculated results, to build this storage need invest about 99 million USD and IRR 27,4 % margin 0,6 USD/MMBTU, NPV 71,7 million USD with payback period 5 years. Therefore, the storage cost is 0,3 - 0,6 USD/MMBTU. So then, it can be said that storage development in West Java is feasible to be done."
Depok: Fakultas Teknik Universitas Indonesia, 2008
T25077
UI - Tesis Open  Universitas Indonesia Library
cover
Dedy Iskandar
"Sesuai dengan kebijakan pemerintah untuk melakukan konversi penggunaan minyak bumi ke gas bumi yang menyebabkan peningkatan permintaan terhadap gas bumi di Indonesia. Salah satu penyediaan dan mentransportasikan gas bumi sebagai sumber energi dilakukan melalui jaringan pipa, baik di darat atau bawah laut yang kemudian akan didistribusikan ke pelanggan. Beberapa metode yang digunakan agar suatu jaringan pipa tetap dapat mengalirkan gas bumi dengan baik dan aman antara lain dengan melakukan inspection (pengawasan), maintenance (pemeliharaan) dan repair (perbaikan jika dibutuhkan) secara teratur. Dengan tidak terintegrasinya metoda-metoda tersebut sehingga potensi kegagalan pada jaringan pipa masih cukup besar, sehingga dilakukan suatu studi terintegrasi pada jaringan pipa gas alam yaitu Pipeline Integrity Management System (PIMS).
Pipeline Integrity Management System meliputi pemodelan atau simulasi yang dilakukan melalui proses assesment yang berkelanjutan dari suatu sistem baik dari segi desain, konstruksi, operasi, pemeliharaan yang sesuai dengan jaringan pipa gas bumi. Tindakan yang dilakukan untuk mengimplementasikan pemodelan ini adalah mencari dan mengintegrasikan informasi yang ada, mengidentifikasi penyebab kegagalan serta melakukan analisa resiko, mengembangkan rencana integrity management, mengimplementasikan program integrity management yaitu inspeksi dan survey, menganalisis hasil untuk memutuskan program yang tepat (perbaikan atau penggantian) terhadap jaringan pipa tersebut, melakukan evaluasi dari tindakan yang diambil, kemudian melaporkan dan melakukan improvement berkelanjutan.
Hasil dari studi yang dilakukan pada jaringan pipa gas alam bawah laut di lapangan jawa barat bagian utara dengan metode Pipeline Integrity Management System (PIMS) menunjukkan bahwa tingkat risiko beberapa jaringan pipa gas alam tersebut kategori high. Jaringan pipa gas alam bawah laut yang mempunyai kategori high akan dilakukan analisa ekonomi. Analisa ekonomi yang akan dilakukan yaitu membandingkan biaya yang dibutuhkan untuk menjaga dan memelihara integritas jaringan pipa dengan memasang atau laydown jaringan pipa. Analisa keekonomian ini dilakukan untuk mengetahui dan merekomendasikan kepada pihak manajemen jika jaringan pipa gas alam bawah laut mengalami kegagalan. Rekomendasi yang dikeluarkan yaitu jaringan pipa akan diperbaiki atau diganti dengan melakukan pemasangan jaringan pipa baru.

According to policy of government regarding conversion oil into the natural gas and increasing demand for natural gas in Indonesia. One of supply and transportation of natural gas as energy source is done by through pipeline, either in onshore or offshore which then will be distributed to customer. Some methods applied that pipeline still can deliver natural gas with properly and safely by doing inspection, maintenance and repair (if it is required) regularly. Nevertheless this method is not so well integrated so the potential failure on the pipeline still quite large. To overcome the lack of the previous methods, we conduct an integrated study for the pipeline known as Pipeline Integrity Management System (PIMS).
Pipeline Integrity Management System (PIMS) includes modeling or simulation conducted through a process of ongoing assessment of a system in design, construction, operation, maintenance, which according to the natural gas pipeline. To implement this modeling is to search and integrates existing information, identifies the root causes of failure and conduct a risk analysis, develops an integrity management plans, inspections and surveys, analyzing the results to decide the appropriate program to the pipelines and evaluating the actions taken, makes a report and continuous improvement.
Result from studies conducted at natural gas pipeline at offshore North West Java field with methods Pipeline Integrity Management System (PIMS) indicates that level of risk some the natural gas pipeline is category high. This result is obtained through risk assessment model of probability and consequences Natural gas pipeline at offshore North West Java having category high will be conduct economics analysis. Economics analysis which will be done that is comparing cost required to maintain pipeline integrity and installing or laydown new pipeline. Economics analysis conduct is to shown and recommends to the top level management if offshore natural gas pipeline failure. The recommendations to the pipeline is will be keep maintain integrity or install of new pipeline."
Depok: Fakultas Teknik Universitas Indonesia, 2009
T25135
UI - Tesis Open  Universitas Indonesia Library
cover
Darmansyah
"Indonesia adalah negara yang memiliki potensi besar dalam sumber daya alam, potensi-potensi alam tersebut yang dapat dikembangkan salah satunya adalah serat alam. Serat alam yang cukup potensial untuk dikembangkan lebih jauh saat ini adalah serat nata de coco. Nata de coco adalah hasil proses fermentasi air kelapa dengan menggunakan bakteri Acetobacter xylinum. Secara kimiawi, serat yang terkandung di dalam nata de coco adalah selulosa, dimana saat ini serat selulosa telah diaplikasikan untuk berbagai keperluan lain, misalnya untuk diafragma transduser, kulit buatan, bahan pencampuran kertas, karbon film elektrokonduktif dan lain sebagainya. Untuk mendapatkan material serat yang kuat diperlukan perlakuan khusus, yaitu dengan menambahkan material lain seperti nanofiller SiO2, Al2O3, dan clay, lalu dipadukan dengan berbagai jenis resin, sehingga material komposit berbahan dasar serat tersebut, memiliki sifat yang lebih kuat dari logam alloy dan material high strength lainnya.
Dalam penelitian ini telah dilakukan pembuatan serat nata de coco dan komposit serat-filler-resin, yang mana variasi nutrisi dan pH yang paling baik adalah variasi dengan konsentrasi gula 2,0% w/v; urea 0,5% w/v dan asam asetat 0,3% v/v (pH 3,8), variasi ini menghasilkan tebal serat basah sekitar 14,57 mm dan massa serat sekitar 595 gram dari 700 ml media air kelapa. Dari karakterisasi dengan menggunakan XRD diketahui bahwa struktur serat nata de coco yang dibuat adalah material serat selulosa dengan puncak intensitas utama terletak pada posisi 2θ di antara 26º ? 26,5º. Sedangkan pengujian dengan menggunakan SEMEDX menunjukkan bahwa nanofiller telah terdistribusi merata di dalam serat. Dan dari uji mekanik dengan menggunakan alat uji kuat tarik (Ultimate Tensile Strength) diketahui pula bahwa serat nata de coco murni memiliki kuat tarik sebesar 390,39 MPa dan young modulus sekitar 11,198 GPa.

Indonesia is the country that has great potential of natural resources, natural potentials that can be developed is a natural fiber. One of the potential natural fibers that can be developed at this time is nata de coco. Nata de coco is a result of fermentation of coconut water using the bacteria Acetobacter xylinum. Fiber contained in the Nata de coco is cellulose, cellulose fibers, where it currently has can be applied to various other purposes such as the diaphragm transducer, artificial leather, paper mixing materials, carbon film electro-conductive and etc. To obtain a strong fiber material required special treatment, namely by adding other materials such as nanoparticles of SiO2, Al2O3, and clay, then combined with various types of resin, so that the composite fiber materials have properties that are stronger than metal alloy and other material high strength.
In this study has been carried out making nata de coco fiber and composite fiber-resin-filler, in which variations of nutrients and pH is the best concentration variation of sugar 2.0% w/v; urea 0.5% w/v and acetate acid 0.3% v/v (pH 3.8), this variation produces a thick fiber of about 14.57 mm and wet mass fiber of approximately 595 grams for 700 ml medium of coconut water. From the XRD pattern is known that the structure of pure nata de coco fiber is cellulose fiber material with the main peak intensity located 2θ positions around 26º ? 26,5º. While for the examination by using SEM-EDX is known that the filler material has been distributed uniformly in the fiber. And from mechanical tests using The Ultimate Tensile Strength is shown that pure nata de coco fiber has tensile strength of 390.39 MPa and young modulus around 11,198 GPa."
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27911
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3   >>