Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 124 dokumen yang sesuai dengan query
cover
Insan Halim Mauludi
"Penelitian ini membahas tentang pembuatan gemuk bio lithium komplek menggunakan pelumas hasil epoksidasi minyak sawit. Diharapkan dengan penggunaan minyak sawit dan complexing agent akan didapatkan komposisi dan produk gemuk bio lithium yang memiliki sifat biodegradable dan memiliki ketahanan terhadap suhu lebih tinggi dari 206ºC. Complexing agent yang ditambahkan adalah asam asetat. Komposisi complexing agent divariasikan 0, 2, 3 dan 5 persen. Additive extreme pressure dan anti wear juga ditambahkan dan divariasikan 0 ; 0,5 ; 1 dan 2 persen. Produk yang didapatkan diuji karakteristik dropping point, penetration dan four ball test. Hasil dari penelitian didapatkan dropping point lebih dari 206ºC akibat pengaruh penggunaan complexing agent. Didapatkan pula produk gemuk bio lithium yang memiliki kualitas lebih baik dibandingkan gemuk komersil.

In this research the bio grease lithium complex had been made used lubricant from epoxidation crude palm oil. The grease that had been made are expected to have biodegrability and have stability at high temperature more than 206ºC. The complexing agent which be add in to mixture acetic acid. Different amount of complexing agent 0; 2; 3 and 5 persen. Anti wear and extreme pressure additive is added and variated also to 0 ; 0,5 ; 1 and 2 persen. Dropping point test, penetration test and four ball test is provide to the product. The result of this research dropping point test increased from 206ºC, in fluenced by complexing agent. A bio lithium grease which has a better quality than commersial grease is obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52211
UI - Skripsi Open  Universitas Indonesia Library
cover
Hanif Adhi Setyoko
"Sintesis biodiesel dari minyak sawit trigliserida dengan metanol melalui proses transesterifikasi dilakukan dengan menggunakan zeolit alam Malang yang diimpregnasi dengan larutan basa KOH membentuk katalis heterogen. Proses transesterifikasi dilakukan dengan variasi terhadap konsentrasi katalis sebesar 5% dan 10% dengan rasio mol 6:1 dan 10:1. Temperatur reaksi pada 65_C dengan waktu reaksi selama 8 jam pada tiap variasi. Penurunan nilai densitas KOH/z 10% 10:1 (0,8812g) and viskositas KOH/z 5% 10:1 (0,8812cSt), lebih rendah dibanding yang lain, sebelum dan sesudah reaksi menunjukkan bahwa terdapat bagian dari molekul trigliserida yang terputus menjadi molekul yang lebih kecil.
Dari hasil penelitian diperoleh bahwa konversi KOH/z 10% 10:1 lebih besar dibanding yang lain (86,4%). Analisa dengan menggunakan spektrum FT-IR minyak sawit sebelum dan sesudah reaksi menunjukkan bahwa peak absorbansi dari gugus metil tinggi. Hal ini berarti terjadi peningkatan jumlah gugus metil selama proses reaksi. Dari analisa dengan menggunakan GC-MS, kandungan senyawa hidrokarbon yang terdapat pada produk biodiesel diketahui sebagian besar mengandung C18.

Synthesize biodiesel from palm oil triglyceride in methanol through transesterification was used natural zeolite Malang were impregnated using potassium hydroxide as heterogenous catalyst. The transesterification process were varied by catalyst concentration 5% and 10 % with ratio mol 6:1 and 10:1. The reaction temperature was 65_C with reaction time was 8 hours for each variation. The decreasing density KOH/z 10% 10:1 (0,8812g) and viscosity KOH/z 5% 10:1 (0,8812cSt), was lower than the other, of palm oil before and after reaction began have proven that a part of triglyceride molecules in the palm oil were cracked to become smaller molecules.
The results showed that the conversion of KOH/z 10% 10:1 was bigger than the other (86,4%). Further analyst using FT-IR spectra of palm oil before and after reaction had shown that peak of absorbance of methyl group was high. It means that amount of methyl group was increased during the reaction. From the result of GC-MS analyst, the hydrocarbon contents of the biodiesel were known consisting mostly C18.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52264
UI - Skripsi Open  Universitas Indonesia Library
cover
Tri Puji Lestari Erwin
"Parasetamol merupakan bahan kimia yang telah secara luas digunakan untuk menekan rasa sakit dan pereda demam. Pada penelitian ini, dikembangkan sintesis parasetamol menggunakan metode Harmon Northrop Morse dengan mereaksikan p-aminophenol dan asam asetat glasial dengan zeolit alam sebagai katalis. Zeolit yang digunakan dipreparasi terlebih dahulu agar fungsinya sebagai katalis menjadi maksimal.
Setelah preparasi didapatkan 4 jenis katalis yaitu zeolit alam yang dikeringkan (ZK), zeolit oven 150ºC, 8 jam (ZA), H-Zeolit (HZ) dan Zn-Zeolit (ZnZ). Masing-masing katalis ini digunakan dalam sintesis parasetamol kemudian hasilnya dianalisis dengan basis persentase p-Aminophenol yang terkonversi. Berdasarkan hasil analisis tersebut didapatkan katalis dua terbaik ZA dengan p-Aminophenol yang terkonversi 55,87% dan HZ dengan p-Aminophenol yang terkonversi 41,06%.

Paracetamol is world widely use as drug due to its function as analgesic and antipyretic. In this research, the synthesis of paracetamol was develppped using Harmon Northrop Morse method, that is reaction between p-aminophenol and acetic acid glacial using natural zeolite as catalyst. Zeolite have been pretreated to make it became more active as a catalyst.
After the pretreatment we obtain 4 catalysts which are dried zeolite (ZK), zeolite from the oven 150ºC, 8 hours (ZA), H-zeolite (HZ) and Zn-Zeolite (ZnZ). Each of catalyst has been used for paracetamol synthesis, and the result is then analyzed with the converted of p-aminophenol as the base-component. From the analyze result, we got two catalysts having the best performance which are ZA with 55,87% p-aminophenol converted and HZ with 41,06% p-aminophenol converted.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52208
UI - Skripsi Open  Universitas Indonesia Library
cover
Gorby Gautama
"Perengkahan minyak nabati merupakan salah satu proses pengolahan minyak nabati untuk dimanfaatkan sebagai bahan bakar. Bahan bakar yang bisa didapatkan dari perengkahan termal atau katalitik dapat berupa biogasolin yang setara dengan bensin dan biodiesel yang setara dengan solar. Komposisi produk perengkahan merupakan faktor penting dalam penentuan jenis bahan bakar yang ingin diperoleh.
Penelitian ini bertujuan untuk merepresentasikan produk-produk perengkahan menggunakan model prediktif dan memberikan gambaran pengaruh variabel suhu dan waktu terhadap proses perengkahan. Data eksperimen beberapa minyak nabati disimulasikan dengan MATLAB menggunakan metode curve fitting.
Hasil simulasi memperlihatkan bahwa model yang digunakan pada variabel suhu telah mampu merepresentasikan produk perengkahan, tetapi untuk model pada variabel waktu masih diperlukan perbaikan. Suhu optimum untuk perengkahan termal berkisar pada suhu 400-450°C dan untuk perengkahan katalitik berkisar pada suhu 320-400°C. Waktu optimum untuk perengkahan berkisar pada 5-25 detik. Uji statistik menunjukkan hubungan signifikan antara suhu dan waktu terhadap yield.

Cracking of vegetable oil is one of process production of fuel that could be made from vegetable oil. Types of fuel that can be obtained from thermal or catalytic cracking are fuel such as bio-gasoline which equivalent with gasoline and bio-diesel which equivalent with diesel fuel. Composition of cracking products is one of the important factors in deciding which fuel that has to produce.
This research objective is to make a representation of cracking products using predictive model and give some view about influence of temperature and residence time in cracking process. Experimental data of vegetable oils cracking are simulated using MATLAB with curve fitting method in its simulation.
Simulation results show that the model can be used in variation of temperature, but not too good in variation of residence time. Optimum temperature for thermal cracking ranged from 400_C to 450_C and for catalytic cracking ranged from 320°C to 400°C. Optimum residence time for both type of cracking ranged from 5 second to 25 second, for vegetable oil cracking. Statistical test show some significant relation between temperature and reaction time with yield.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51677
UI - Skripsi Open  Universitas Indonesia Library
cover
Fatimatuts Tsani
"Dalam penelitian ini telah dilakukan preparasi katalis NiMo/γ-Al2O3 dengan metode impregnasi. Pemilihan katalis berbasis nikel ini karena nikel termasuk oksida logam transisi yang memiliki karakter yang dapat diaplikasikan sebagai katalis dan memiliki energi permukaan yang rendah dibandingkan logam transisi. Selain itu, oksida logam lebih banyak digunakan sebagai bahan katalis karena ketersediannya besar dialam, murah serta waktu hidupnya lama. Sebagai penyangga digunakan alumina. Alumina merupakan salah satu katalis penyangga yang terbaik karena mempunyai surface area yang besar untuk logam dengan disperse tinggi dan sifat mekanik yang kuat sehingga dapat digunakan pada reaktor.
Data XRD menunjukkan ukuran kristal dalam katalis NiMo/γ-Al2O3 pada suhu kalsinasi 480°C adalah 252,006 nm dan pada suhu kalsinasi 600°C adalah 84,155 nm. Sementara data BET menunjukkan luas permukaan katalis pada suhu kalsinasi 480°C sebesar 82,11 m2/g dan 110,84 m2/g pada suhu kalsinasi 600°C. Luas permukaan pada alumina sebelum diimpregnasi adalah 255 m2/g. Penurunan luas permukaan katalis ini dikarenakan terbentuknya oksida- oksida Mo, Ni dan P selama proses kalsinasi.
Analisis SEM menunjukkan bahwa katalis yang diperoleh memiliki diameter agregat sebesar 0,5 µm untuk katalis NiMo/γ-Al2O3 dengan suhu kalsinasi 480°C dan 0,4375 µm untuk katalis NiMo/γ-Al2O3 dengan suhu kalsinasi 600°C.
Pengukuran densitas dan viskositas dilakukan pada produk pirolisis untuk dibandingkan dengan lubricant. Pada penelitian ini didapatkan densitas sebesar 0,8821 g/mL dan viskositas sebesar 9,812. Dari data ini, diketahui bahwa dengan menggunakan katalis NiMo/γ-Al2O3 bisa didapatkan produk pirolisis yang hampir mendekati fraksi lubricant.

In this research has been done a preparation of NiMo/γ-Al2O3 catalyst by impregnation method. The selection of catalist is based on the nickel because it?s included in transition metal oxides that possess applicable character as a catalyst and lower surface energy compared with transition metal. Besides that, metal oxides is more applicated as catalyst material supported by it's abundant availability in nature, easy and longer life time. This research used Alumina as the support. Alumina is one the best support catalyst because it has a large surface area for metals with high dispersion and strong mechanical properties that can be used in reactors.
The XRD data shown that the crystal size in NiMo/γ-Al2O3 catalyst at the calcination temperature 480oC is 252.006 nm and at the calcination temperature 600oC is 84.115 nm. Meanwhile, the BET data shown that the catalyst surface area at calcination temperature 480°C and 600°C sequencely is 82.11 m2/g and 110.84 m2/g at 600°C. The surface area before imprenation is 255 m2/g. The reduction of this catalyst surface area is due to the formation of oxides Mo, Ni and P during the process of calcination.
SEM analysis shown that catalyst obtained possess a diameter of 0.5 µm and 0.43 µm for NiMo/γ-Al2O3 catalyst at calsination temperature 480°C and 600°C, in sequenece.
The measurement of density and viscosity has been done for pirolysis product to be compared with diesel fuel. In this study, earned that the density of 0.88219 g/mL and viscosity of 9.812 cP. From this data, it is known that by using the catalyst can be obtained NiMo/γ-Al2O3 pyrolysis products with density and viscosity close to lubricant.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S384
UI - Skripsi Open  Universitas Indonesia Library
cover
Hilman Hutama
"Pemanfaatan minyak nabati terus dikembangkan untuk mengatasi masalah energi di dunia. Bahan bakar bio memiliki keunggulan lebih ramah lingkungan dan menjaga ketersediaan minyak bumi. Penelitian ini melakukan studi penggunaan model prediktif Analytical Semi Empirical Model (ASEM) dalam merepresentasikan berbagai produk bahan bakar bio dari perengkahan minyak nabati.
Penelitian ini bertujuan menentukan kondisi suhu optimum tiap produk melalui simulasi untuk menghasilkan bahan bakar bio yang ekonomis dan kualitas yang lebih baik. Representasi produksi bahan bakar bio menggunakan model prediktif berdasarkan reaksi secara perengkahan. Data eksperimen sekunder disimulasikan dengan MATLAB menggunakan metode curve fitting.
Hasil simulasi didapatkan bahwa kondisi optimum untuk memproduksi bahan bakar bio adalah sekitar 400-450°C untuk perengkahan termal dan 325-375°C untuk perengkahan katalitik bergantung dari jenis minyak nabati dan produk yang diinginkan.

Implementation vegetable oil has been developed persistently to solve world energy crisis. Biofuel's advantages are environmental friendly and maintain availability of petroleoum. This research studies using the predictive Analytical Semi Empirical Model (ASEM) in representing various biofuel?s products from cracking of vegetable oil.
This research aims determining optimum temperature condition each products through simulation producing biofuel in higher economical and quality aspect. Representing production of biofuel based on cracking reaction. Experimental seconder data of vegetable oils are simulated using MATLAB with curve fitting method.
Result of the simulation, optimum temperature conditions to produce biofuel are 400-450°C for thermal cracking and 325-375°C for catalytic cracking depend on raw material and desirable product
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1360
UI - Skripsi Open  Universitas Indonesia Library
cover
Benedict, Hizkia Juan
"With the rapid growing of Lithium-ion battery (LIB) across the world and in Australia for multiple purposes, LIB presents several emerging challenges such as sourcing the critical minerals (e.g., lithium, cobalt, nickel, manganese) and managing the end-of-life battery waste management. The purpose of this report is to design and develop a process that is able to recover lithium from end-of-life LIB. The proposed processing plant would be located at Townsville, Queensland. The feed that is introduced to the process plant would be 3000 t/y of cathode material. The objective of the process plant is to recycle lithium in the form of lithium phosphate (Li3PO4) and the plant is aim to produce 76.06 kg/hr of Li3PO4. The product is aim to have 99.9% of lithium. The crushing section comes following alkaline leaching through hydrometallurgy main process objective is to reduce the cathode sheets to 250 microns for further leaching processes downstream. 261.74 kg/hr of cathode sheets are entering from alkaline leaching and exit as black mass from the Node-200 at flowrate of 261.48 kg/hr. Main unit in the process is the hammer mill, which is used to reduce the sizes of the cathode sheets. Other units in the process consists of conveyor belts and compressors to transport solids and gas respectively into and exiting the hammer mill with the addition of a cyclone separator to collect black mass that is brought along when sending argon from the hammer mill out into the. The estimated cost of this plant section is 25,132,887 AUD with annual electricity usage of 52,488 kW/year.

Dengan pertumbuhan pesat baterai Lithium-ion (LIB) di seluruh dunia dan di Australia untuk berbagai tujuan, LIB menghadirkan beberapa tantangan baru seperti pengadaan mineral kritis (misalnya, lithium, kobalt, nikel, mangan) dan pengelolaan limbah baterai akhir masa pakai. Tujuan dari laporan ini adalah merancang dan mengembangkan proses yang dapat memulihkan lithium dari LIB akhir masa pakai. Pabrik pengolahan yang diusulkan akan berlokasi di Townsville, Queensland. Bahan baku yang dimasukkan ke pabrik pengolahan adalah 3000 ton per tahun material katoda. Tujuan pabrik pengolahan adalah mendaur ulang lithium dalam bentuk lithium fosfat (Li3PO4) dan pabrik ini bertujuan untuk menghasilkan 76,06 kg/jam Li3PO4. Produk tersebut ditargetkan memiliki 99,9% lithium. Bagian penghancuran mengikuti proses pelindian alkali melalui hidrometalurgi dengan tujuan utama mengurangi lembaran katoda menjadi 250 mikron untuk proses pelindian lebih lanjut di hilir. Sebanyak 261,74 kg/jam lembaran katoda masuk dari pelindian alkali dan keluar sebagai massa hitam dari Node-200 dengan laju aliran 261,48 kg/jam. Unit utama dalam proses ini adalah hammer mill, yang digunakan untuk mengurangi ukuran lembaran katoda. Unit lain dalam proses ini terdiri dari sabuk konveyor dan kompresor untuk mengangkut padatan dan gas masing-masing ke dalam dan keluar dari hammer mill dengan tambahan pemisah siklon untuk mengumpulkan massa hitam yang terbawa saat mengirimkan argon dari hammer mill keluar. Perkiraan biaya bagian pabrik ini adalah 25.132.887 AUD dengan penggunaan listrik tahunan sebesar 52.488 kW/tahun."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andri Wiyo
"Proses hidrodeoksigenasi minyak nabati memiliki potensi yang sangat besar dalam memproduksi bahan bakar bio. Pada penelitian ini disintesis bahan bakar bio jenis renewable diesel dari senyawa model asam oleat melalui proses hidrodeoksigenasi dalam reaktor tangki berpengaduk menggunakan katalis Pd/zeolit. katalis Pd/zeolit-1 dan Pd/zeolit-2 telah berhasil disintesis menggunakan metode microwave polyol dengan perlakuan yang berbeda. Katalis hasil sintesis dikarakterisasi menggunakan PSA, XRD, SEM-EDAX dan BET.
Hasil yang diperoleh menunjukkan bahwa kedua katalis belum berukuran nano tetapi katalis Pd/zeolit 1 merupakan jenis katalis yang memiliki kristalitas, luas permukaan dan pori yang tinggi. Aktivitas katalis diuji dalam reaksi hidrodeoksigenasi pada tekanan 15 bar dengan suhu 375 dan 400 oC.
Dari hasil pengujian diperoleh spesifikasi renewable diesel seperti densitas, viskositas dan indek setana yang lebih bagus dari biodiesel dan sesuai dengan standard diesel komersial (ASTM D-975). Nilai selektivitas dan yield tertinggi diperoleh pada suhu reaksi 375 oC menggunakan katalis Pd/Zeolit 1 yaitu sebesar 42,70 % dan 34,87 %. Selain itu, pada kondisi ini reaksi dekarboksilasi lebih dominan dengan sisa oksigenat sebesar 39,19%.

Hydrodeoxygenation process of vegetable oil has a big potential to produce biofuel. This experiment focuses to synthesis of renewable diesel from oleic acid as a model compound through hydrodeoxygenation in stirrer tank reactor using Pd/zeolite as catalyst. Pd/zeolit 1 and Pd/zeolit 2 has been successfully prepared by using microwave polyol method with differ in treatment. The synthesized catalysts were characterized by means of PSA, XRD, SEM-EDAX and BET.
The results show that both of catalysts not become nano size yet but Pd/zeolite 1 has high crystalline and large surface and high pore area. The activity of catalyst tested in hidrodeoxygenation at 15 bar with temperature 375 and 400 oC.
The result of the test obtained specification of renewable diesel like density, viscosity and cetane index are better than biodiesel and suitable to commercial diesel standard (ASTM D-975). The highest selectivity and yield obtained at temperature 375 oC using Pd/zeolit 1 catalyst there are 42,70 % and 34,87 %. Beside that, decarboxylation reaction is dominant in this condition with number of oxigenated residue is 39,19 %.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45817
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alyamitha Nadiyah Syafitri Baud
"Milling and LFP synthesis section (node 400) is a mechanochemical process used to grind mainly feed from node 300 (from stream 303) and node 200 (from stream 203) into a fine powder. Subsequently, solid glucose is also added to the ball mill to carbon coated the surface of regenerated LFP crystals. The LFP crystals are made by mixing FePO4 and LiFePO4 solid mixture and LiOH and Li2CO3 solution mixture under argon atmosphere. Using electrical and thermal energy solids, the feed is being mixed for 4 h using ball milling to achieve a more uniform distribution of components within the materials. At 200o C decomposed glucose promotes the reduction conversion of Fe3+ to Fe2+. After heating, LiFePO4/C is synthesised under 200 ºC. Due to the involvement of organic matter glucose in the reaction, CO2 is inevitably generated in this process. In addition to carbon dioxide, the exhaust gas also contains water vapor and argon gas. They are all transferred to be treated in the next step instead of emitting. The output from this process is the crystals solids of the regenerated LFP that has been coated with carbon, this is where the final product of the whole process produced. The objective of the final process is to create a regenerated carbon coated LFP at a rate of 1001.59 tonnes/yr.

Bagian penggilingan dan sintesis LFP (node 400) adalah proses mekanokimia yang digunakan untuk menggiling terutama umpan dari node 300 (dari aliran 303) dan node 200 (dari aliran 203) menjadi bubuk halus. Selanjutnya, glukosa padat juga ditambahkan ke ball mill untuk melapisi permukaan kristal LFP yang diregenerasi dengan karbon. Kristal LFP dibuat dengan mencampurkan campuran padat FePO4 dan LiFePO4 serta campuran larutan LiOH dan Li2CO3 di bawah atmosfer argon. Menggunakan energi listrik dan termal, umpan dicampur selama 4 jam menggunakan ball milling untuk mencapai distribusi komponen yang lebih seragam di dalam bahan. Pada suhu 200°C, glukosa yang terdekomposisi mendorong konversi reduksi Fe3+ menjadi Fe2+. Setelah pemanasan, LiFePO4/C disintesis di bawah suhu 200°C. Karena keterlibatan bahan organik glukosa dalam reaksi, CO2 tidak dapat dihindari dihasilkan dalam proses ini. Selain karbon dioksida, gas buang juga mengandung uap air dan gas argon. Semuanya dipindahkan untuk diproses pada langkah berikutnya daripada dilepaskan. Hasil dari proses ini adalah kristal padat dari LFP yang diregenerasi yang telah dilapisi dengan karbon, di sinilah produk akhir dari seluruh proses dihasilkan. Tujuan dari proses akhir ini adalah untuk menghasilkan LFP yang dilapisi karbon dengan laju 1001.59 ton/tahun."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yuriz Mayolie
"ABSTRAK

Industri besi dan baja merupakan kontributor utama emisi CO2, terhitung sekitar 28% dari keseluruhan emisi industri. Untuk mengurangi ini, analisis terhadap pemanfaatan Blast Furnace Gas(BFG) melalui daur ulang top-gas dan Carbon Capture and Utilization(CCU) telah dilaksanakan. Pertama, CO2dihilangkan dari BFG dan direduksi dalam reaktor elektrokimia untuk menghasilkan H2dan CO. Gas-gas ini kemudian dicampur dengan BFG yang tersisa dan didaur ulang ke blast furnace sebagai gas pengurang yang dapat mengurangi konsumsi carbon dan emisi COsecara keseluruhan. Tinjauan literatur dan keseimbangan massa awal dilakukan untuk mengidentifikasi persyaratan proses dan teknologi pemisahan CO2yang paling cocok untuk dua opsi yang tersedia: (i) pemisahan CO2unit tunggal dan (ii) unit ganda. Setelah penyelesaian laporan ini, disimpulkan bahwa penyerapan bahan kimia menggunakan methyldiethanolamine(MDEA) adalah teknologi yang paling menjanjikan untuk digunakan dalam unit pemisahan CO2tunggal karena ketersediaan panas limbah dan kapasitas pemuatan CO2yang lebih tinggi. Di antara faktor-faktor yang diketahui menghambat penggunaan penyerapan fisik dan adsorpsi adalah laju aliran besar dan kesulitan untuk mengompresi dan mendinginkan BFG. Namun, teknologi ini menjanjikan untuk digunakan sebagai unit kedua dalam konfigurasi unit pemisahan ganda.


ABSTRACT


The iron and steel industry is a major contributor to CO2emissions, accounting for about 28% of overall industrial emissions. To reduce this, utilization of Blast Furnace Gas (BFG) by means of top-gas recycling and Carbon Capture and Utilization (CCU) is analyzed. CO2is first removed from the BFG and reduced in an electrochemical reactor to produce H2and CO. These gases are then mixed with remaining BFG and recycled to the blast furnace as reducing gases which can reduce overall coke consumption and CO2emissions. A literature review and a preliminary mass balance are done to identify the process requirements and most suitable CO2separation technology for two available options: (i) single unit and (ii) double units COseparation. Upon the completion of this report, it is concluded that chemical absorption using methyldiethanolamine (MDEA) is the most promising technology to use in a single COseparation unit due to the availability of waste heat and higher CO2loading capacity. Among the factors known to hinder the use of physical absorption and adsorption are large flowrate and difficulty to compress and cool BFG. However, these technologies are promising to use as the second unit in a double separation units configuration.

"
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>