Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
M. Samsuri
"Salah satu prioritas dalam agenda jangka panjang pengembangan energi baru dan terbarukan yang tertuang dalam Agenda Riset Nasional (ARN) adalah pengembangan bioetanol dari material lignoselulosa. Masalah yang mendasar dalam proses peningkatan produksi etanol dari material lignoselulosa termasuk bagas adalah bagaimana mengkonversi secara menyeluruh polisakarida menjadi monosakarida dengan memanfaatkan enzim-enzim yang spesifik. Untuk material bagas, yang dimaksud konversi menyeluruh adalah konversi selulosa, xylan dan selobiosa. Selain itu, keberadaan lignin dalam bagas dapat menghambat akses enzim dalam memecah polisakarida menjadi monosakarida, sehingga menyebabkan produksi etanol tidak optimal.
Pada penelitian ini, telah dilakukan penelitian dengan teknologi proses baru untuk meningkatkan produksi etanol dari bagas melalui proses sakarifikasi dan fermentasi serempak (SSF). Penelitian yang dilakukan adalah mencakup proses menyeluruh perlakuan awal dengan beberapa jamur pelapuk putih (Ceriporiopsis subvermispora, Lentinus edodes dan Pleurotus ostreatus) dan steaming, hidrolisis menggunakan kombinasi multi enzim selulase, selobiasedan xylanase serta proses fermentasi dengan Saccharomyces cerevisiae AM 12 yang dilakukan secara serempak.
Kombinasi enzim selulase-selobiase, selulase-xylanase dan selulase-selobiase-xylanase meningkatkan produksi etanol dari bagas dalam proses SSF. Konsentrasi etanol tertinggi yang dihasilkan dengan kombinasi enzim selulase-selobiase, selulase-xylanase dan selulase-selobiase-xylanase berturut-turut 6,9 g/L, 8,6 g/L dan 9,8 g/L, sedangkan dengan enzim selulase saja sebesar 6,0 g/L. Persentase ethanol yield (berbasis berat bagas) yang dihasilkan dengan kombinasi enzim tersebut berturut-turut sebesar 13,9%, 17,2% dan 19,7%, sedangkan dengan enzim selulase saja sebesar 11,95%. Pencapaian hasil teori (theoretical yield) tertinggi dengan menggunakan kombinasi enzim selulase-selobiase-xylanase sebesar 49,5%, sedangkan dengan enzim selulase saja pencapaian hasil teori sebesar 42,0%.
Peningkatan produksi etanol dengan enzim selulase-selobiase membuktikan bahwa selain glukosa, selobiosa juga terbentuk dalam proses hidrolisis parsial selulosa oleh enzim selulase. Selobiosa yang terbentuk kemudian secara simultan dikonversikan menjadi glukosa oleh enzim selobiase, yang dibuktikan dengan peningkatan glukosa sebesar 16,2% setelah proses dihidrolisis dengan enzim selulase-selobiase. Selanjutnya glukosa yang terbentuk secara simultan dikonversi menjadi etanol oleh S. cerevisiae.
Selain itu, pengingkatan jumlah etanol yang dihasilkan dengan kombinasi selulase-selobiase-xylanase juga membuktikan bahwa reaksi multi enzim dengan masing-masing substrat yang spesifik dapat terjadi dalam proses SSF. Reaksi multi enzim tersebut yaitu reaksi hidrolisis selulosa dengan selulase menjadi glukosa, hidrolisis xylan dengan xylanase menjadi xylosa dan hidrolisis selobiosa menjadi glukosa dengan enzim selobiase. Selanjutnya secara simultan glukosa dan xylosa yang terbentuk dikonversi menjadi etanol dengan S. cerevisiae. Hal ini dibuktikan dengan menurunnya kadar selulosa dan hemiselulosa setelah proses SSF berlangsung yaitu dari 50% dan 20% menjadi 22% dan 10%.
Peningkatan sangat signifikan pada produksi etanol dari bagas dengan kombinasi enzim selulase-selobiase, selulase-xylanase dan selulase-selobiase-xylanase setelah dilakukan kombinasi perlakuan awal C. subvermispora dan steaming 180_C. Konsentrasi etanol yang dihasilkan dengan kombinasi enzim dan perlakuan awal tersebut berturut-turut sebesar 12,9 g/L, 13,5 g/L dan 18,2 g/L. Dengan persentase ethanol yield yang dihasilkan berbasis berat bagas sebesar 25,7%, 26,9% dan 36,4%.
Peningkatan etanol yang dihasilkan setelah perlakuan awal dengan C. subvermispora dan steaming disebabkan adanya proses biodegradasi lignin oleh C. subvermispora dan pelarutan kristal-kristal selulosa dan hemiselulosa selama proses perlakuan dengan steaming berlangsung. Hal ini dibuktikan dengan adanya penurunan kadar lignin sebesar 26,5%, selulosa sebesar 9,4% dan hemiselulosa 14,1% setelah kombinasi perlakuan awal C. subvermispora dan steaming pada suhu 180_C.
Ethanol yield tertinggi 36,4% dengan pencapaian theoretical yield sebesar 91,4%, yaitu dengan enzim selulase-selobiase-xylanase yang dikombinasikan dengan perlakuan awal C. subvermispora dan steaming 180_C. Pencapaian hasil teori ini meningkat sangat signifikan dibandingkan dengan etanol yang dihasilkan jika hanya menggunakan enzim selulase saja (42,03%). Peningkatan tersebut membuktikan bahwa kombinasi perlakuan awal C. subvermispora dan steaming yang dipadukan dengan hidrolisis multi enzim selulase-selobiase-xylanase sangat efektif dalam mengkonversi bagas menjadi etanol dalam proses SSF. Hal ini dibuktikan dengan menurunnya kadar selulosa dan hemiselulosa pada residu bagas setelah proses SSF berlangsung yaitu dari 50% dan 20% menjadi 4,5% dan 3,5%.
One of priority in the long term National Research Agenda for renewable energy development is bioethanol production from lignocellulosic materials. The problem in increasing ethanol production from lignocellulosic material, including bagasse, is how to convert completely polysaccharide to monosaccharide using specific enzymes. Complete conversion of bagasse includes how to convert cellulose, xylan and cellobiose. Another problem is the existence of lignin in bagasse, which makes it difficult for enzyme to access and, thus to convert polysaccharide to monosaccharide. It causes unoptimal ethanol production.
Novel technology to produce ethanol from bagasse by simultaneous saccharification and fermentation (SSF) was carried out. Experiments included pre-treatments of bagasse with several white rot fungi (Ceriporiopsis subvermispora, Lentinus edodes and Pleurotus ostreatus) and steaming; hydrolysis with combination cellulase, cellobiase and xylanase enzymes; followed by fermentation using Saccharomycess cerevisiae AM 12.
Combination of cellulase-cellobiase, cellulase-xylanase and cellulase-cellobiase-xylanase increased the ethanol production from bagasse. The highest ethanol concentration after hydrolysis with those enzymes were 6.9 g/L, 8.6 g/L and 9.8 g/L, respectively, compared to using cellulase only which was 6.0 g/L. The highest yield of ethanol (based on bagasse) with combination of those enzymes were 13.9%, 17.2% and 19.68%, while using cellulase only was 12.0%. The highest result of ethanol production in theoretical yield with combination of enzymes cellulase-cellobiase-xylanase is 49.5%, while using cellulase only 42.0%.
Beside glucose, the increase of ethanol production from bagasse with cellulase-cellobiase enzymes confirmed that cellobiose was also produced in partial hydrolysis of cellulose with cellulase enzyme. Cellobiose was then converted to glucose simultaneously with cellobiase enzyme, this was revealed by the increase of glucose content about 16.2% after hydrolysis with cellulase-cellobiase enzymes. And then glucose was converted to ethanol simultaneously with S. cerevisiae.
The increase of ethanol yields with combination of cellulase-cellobiase-xylanase enzymes confirmed that multi enzymes reaction took place on specific substrates. This multiple reactions includes hydrolysis of cellulose to glucose by cellulase, hydrolysis of xylan to xylose by xylanase enzyme and hydrolysis of cellobiose to glucose by cellobiase enzyme. Then glucose and xylose were converted to ethanol simultaneously by S. cerevisiae. This phenomenon was revealed by weight loss of cellulose and hemicellulose of bagasse after SSF process from 50% and 20% to 22% and 10%, respectively.
The significance increase of the ethanol production was achieved after pre-treatment with combination of C. subvermispora and steaming 180_C. The highest ethanol production at combination of cellulase-cellobiase, cellulase-xylanase and cellulase-cellobiase-xylanase after pre-treatment C. subvermispora and steaming 180_C were 12.9 g/L, 13.5 g/L and 18.2 g/L, respectively. The highest yield of ethanol (based on bagasse) with those combination were 25.7%, 26.9% dan 36.4%, respectively.
The increase of ethanol yield after pre-treatment with C. subvermispora and steaming was caused by lignin biodegradation of bagasse with C. subvermispora and dissolution of cellulose and hemicelluose crystalline in steaming treatment process. This was revealed by lignin loss about 26.5%, cellulose loss about 9.4% and hemicellulose loss about 14.1% after pre-treatment with combination of C. subvermispora and steaming at 180_C.
The highest achievement of ethanol production in theoretical yield with combination cellulase-cellobiase-xylanase after pre-treatment with combination of C. subvermispora and steaming at 180_C was 91.4%. This was a very significant increase compared to the ethanol production in theoretical yield when using cellulase only (42.0%). This increase of ethanol yield revealed that combination of pre-treatment and hydrolysis of multi enzymes very effectively converting bagasse to ethanol in SSF. This phenomenon was confirmed by weight loss of cellulose and hemicellulose in bagasse after SSF process from 50% and 20% to 4.5% and 3.5%.
"
Depok: Program Pascasarjana Universitas Indonesia, 2009
T25806
UI - Disertasi Open  Universitas Indonesia Library
cover
Achmadin Luthfi Machsun
"ABSTRAK
Microreaktor telah menjadi teknologi yang menjanjikan dalam bidang bioteknologi dan teknik kimia. Dalam penelitian ini dikembangkan konsep baru biokatalis membran mikroreaktor (BMM) untuk reaksi transesterifikasi secara kontinyu dengan memanfaatkan pori-pori membran sebagai mikroreaktor. Pori-pori membran yang dilapisi dengan enzim lipase dari Pseudomonas sp dengan cara adsorpsi sederhana dan dilanjutkan dengan filtrasi bertekanan. Suatu larutan lipase dibiarkan mengalir pada membran dan merembes melalui pori-pori dan molekul lipase molekul teradsorpsi pada dinding pori-pori bagian dalam. Membran yang terbuat dari mixed cellulose ester (MCE) dan polyetersulfone (PES) digunakan untuk studi immobilisasi lipase tetapi hanya PES membran digunakan sebagai mikroreaktor untuk studi transesterifikasi. Sifat katalitik biokatalis membran mikroreaktor (BMM) telah dipelajari dalam sintesis biodiesel melalui reaksi transesterifikasi triolein dengan metanol. Transesterifikasi dilakukan dengan melewatkan larutan triolein dan metanol melalui pori-pori membran yang telah dilapisi lipase. Konversi maksimum triolein dengan BMM sekitar 80% dengan waktu reaksi 20-30 menit. Sistem biokatalis membran mikroreaktor dengan lipase sebagai biokatalis menunjukkan aktivitas yang jauh lebih unggul dibandingkan dengan lipase bebas, yaitu 12-25 kali lipat. Tidak ada penurunan fluks dan aktivitas yang diamati selama 12 hari operasi terus-menerus. Biokatalis membran mikroreaktor memiliki potensi yang besar untuk diterapkan dalam proses transesterifikasi trigliserida pada produksi biodiesel komersial karena akan mengurangi limbah dalam skala besar dan memiliki waktu reaksi yang jauh lebih kecil.

ABSTRACT
Microreactors have become a promising technology in the biotechnology and chemical engineering field. In this study a new concept of biocatalytic membrane microreactor was developed for continuous transesterification reaction by utilizing membrane pores as a kind of microreactor. The membrane pores were coated with lipase from Pseudomonas sp by simple adsorption and continues with pressure driven filtration. A lipase solution was allowed permeating through the membrane and lipase molecule adsorbed on the inner wall of the membrane pores. Membranes made of mixed cellulose ester (MCE) and polyethersulfone (PES) were used for lipase immobilization studies but only PES membranes were used as microreactor for transesterification studies. The catalytic properties of biocatalytic membrane microreactor (BMM) have been studied in biodiesel synthesis through transesterification of triolein with methanol. Transesterification was carried out by passing solution of triolein and methanol through pores of the membrane. The maximum conversion of triolein with lipase-membrane microreactor was approximately 80% with reaction time 20-30 minutes. The biocatalytic membrane microreactor system with lipase as biocatalysts showed far superior activities compared to those of free lipase, i.e. 12-25 fold. No decrease in flux and activities were observed over a period of 12 days of continuous operation. These biocatalytic membrane microreactor is of great potential to be applied in the process of transesterification of triglycerides for commercial biodiesel production since it would reduce waste in large scale and has a much smaller reaction time."
Depok: 2011
D1188
UI - Disertasi Open  Universitas Indonesia Library
cover
Achmadin Luthfi Machsun
"ABSTRAK
Microreaktor telah menjadi teknologi yang menjanjikan dalam bidang bioteknologi dan teknik kimia. Dalam penelitian ini dikembangkan konsep baru biokatalis membran mikroreaktor (BMM) untuk reaksi transesterifikasi secara kontinyu dengan memanfaatkan pori-pori membran sebagai mikroreaktor. Poripori membran yang dilapisi dengan enzim lipase dari Pseudomonas sp dengan cara absorpsi sederhana dan dilanjutkan dengan filtrasi bertekanan. Suatu larutan lipase dibiarkan mengalir pada membran dan merembes melalui pori-pori dan molekul lipase molekul teradsorpsi pada dinding pori-pori bagian dalam.
Membran yang terbuat dari mixed cellulose ester (MCE) dan polyetersulfone (PES) digunakan untuk studi immobilisasi lipase tetapi hanya PES membran digunakan sebagai mikroreaktor untuk studi transesterifikasi. Sifat katalitik biokatalis membran mikroreaktor (BMM) telah dipelajari dalam sintesis biodiesel melalui reaksi transesterifikasi triolein dengan metanol. Transesterifikasi dilakukan dengan melewatkan larutan triolein dan metanol melalui pori-pori membran yang telah dilapisi lipase. Konversi maksimum triolein dengan BMM sekitar 80% dengan waktu reaksi 20-30 menit. Sistem biokatalis membran mikroreaktor dengan lipase sebagai biokatalis menunjukkan aktivitas yang jauh lebih unggul dibandingkan dengan lipase bebas, yaitu 12-25 kali lipat. Tidak ada penurunan fluks dan aktivitas yang diamati selama 12 hari operasi terus-menerus. Biokatalis membran mikroreaktor memiliki potensi yang besar untuk diterapkan dalam proses transesterifikasi trigliserida pada produksi biodiesel komersial karena akan mengurangi limbah dalam skala besar dan memiliki waktu reaksi yang jauh lebih kecil.

ABSTRACT
Microreactors have become a promising technology in the biotechnology and chemical engineering field. In this study a new concept of biocatalytic membrane microreactor was developed for continuous transesterification reaction by utilizing membrane pores as a kind of microreactor. The membrane pores were coated with lipase from Pseudomonas sp by simple adsorption and continues with pressure driven filtration. A lipase solution was allowed permeating through the membrane and lipase molecule adsorbed on the inner wall of the membrane pores. Membranes made of mixed cellulose ester (MCE) and polyethersulfone (PES) were used for lipase immobilization studies but only PES membranes were used as microreactor for transesterification studies.
The catalytic properties of biocatalytic membrane microreactor (BMM) have been studied in biodiesel synthesis through transesterification of triolein with methanol. Transesterification was carried out by passing solution of triolein and methanol through pores of the membrane. The maximum conversion of triolein with lipasemembrane microreactor was approximately 80% with reaction time 20-30 minutes. The biocatalytic membrane microreactor system with lipase as biocatalysts showed far superior activities compared to those of free lipase, i.e. 12-25 fold. No decrease in flux and activities were observed over a period of 12 days of continuous operation. These biocatalytic membrane microreactor is of great potential to be applied in the process of transesterification of triglycerides for commercial biodiesel production since it would reduce waste in large scale and has a much smaller reaction time."
Depok: 2011
D1178
UI - Disertasi Open  Universitas Indonesia Library
cover
Rahmayetty
"ABSTRAK
Sintesis poli asam laktat PLA menggunakan katalis lipase Candida rugosa dilakukan sebagai salah satu upaya untuk menghasilkan plastik biodegradable ramah lingkungan. dan berasal dari sumber daya terbarukan. Penggunaan lipase Candida rugosa sebagai pengganti katalis logam dalam polimerisasi telah berhasil mensintesis poli asam laktat PLA . Pelaksanaan kegiatan penelitian dilakukan melalui 3 tahapan proses. Tahapan awal adalah polikondensasi asam laktat dengan variasi temperatur untuk menghasilkan oligomer OLLA dengan berat molekul berbeda-beda. Tahap berikutnya adalah depolimerisasi dengan variasi temperatur, tekanan, jenis dan konsentrasi katalis serta berat molekul OLLA untuk menghasilkan laktida. Tahap terakhir adalah polimerisasi laktida menggunakan katalis lipase Candida rugosa dengan variasi temperatur dan konsentrasi lipase untuk menghasilkan PLA. Hasil penelitian menunjukkan bahwa polikondensasi pada temperatur konstan 150; 180; 200oC selama 4 jam dan temperatur bertahap 150oC selama 2 jam dan 180oC selama 2 jam menghasilkan OLLA dengan berat molekul Mw/Mn secara berurutan sebesar 1080/380; 1736/893; 2487/1375 dan 2820/2389. Tahap depolimerisasi menghasilkan laktida dengan stereoisomer L-laktida. Yield dan kemurnian laktida tertinggi masing-masing sebesar 78,8 dan 81,03 . Kondisi optimum tahap depolimerisasi adalah pada temperatur 210oC, tekanan 0,1 atm dan menggunakan katalis SnCl2 0,1 b/b serta berat molekul Mw/Mn OLLA sebesar 2820/2389. Polimerisasi pembukaan cincin L-laktida menggunakan katalis lipase Candida rugosa berlangsung optimum pada temperatur 90oC dengan konsentrasi lipase 2 b/b . Berat molekul PLA tertinggi didapatkan sebesar Mw/Mn 5428/2854 dengan yield 92,58 .

ABSTRACT
The synthesis of polylactic acid PLA using Candida rugosa lipase catalyst is performed as one of the efforts to produce environmentally friendly biodegradable plastic and derived from renewable resources. The use of Candida rugosa lipase as a substitute for metal catalyst in polymerization has successfully synthesized polylactic acid PLA . Implementation of research activities conducted through 3 stages of the process. The initial stage is the polycondensation of lactic acid with temperature variations to produce oligomers OLLA of varying molecular weights. The next step is depolymerization with variation of temperature, pressure, type and concentration of catalyst and molecular weight of OLLA to produce lactide. The last stage is lactide polymerization using Candida rugosa lipase catalyst with variation of temperature and lipase concentration to produce PLA. The results showed that polycondensation at constant temperature 150 180 200oC for 4 hours and gradually temperature 150oC for 2 hours and 180oC for 2 hours produced average molecular weight Mw Mn of 1080 380 1736 893 2487 1375 and 2820 2389, respectively. The depolymerization stage produced lactides with l lactide stereoisomers. The highest yields and purity of lactides were 78.8 and 81.03 , respectively. The optimum condition of the depolymerization step was at temperature of 210oC, pressure of 0.1 atm and using SnCl2 0.1 w w catalyst and average molecular weight Mw Mn of OLLA of 2820 2389. The ring opening polymerization of lactides using Candida rugosa lipase catalyst was optimum at 90 C with a lipase concentration of 2 w w . The highest molecular weight of PLA was obtained Mw Mn 5428 2854 and yield of PLA was 92.58 ."
2017
D2293
UI - Disertasi Membership  Universitas Indonesia Library