Ayom Widipaminto
Abstrak :
Identifikasi jenis material atap bangunan sangat dilakukan untuk bermacam pemanfaatan dari pemodelan cuaca mikro hingga analisis resiko bencana. Penelitian identifikasi jenis material atap bangunan telah dilakukan dengan menggunakan data hiperspektral, data lapangan, laboratorium serta data satelit penginderaan jauh masih memerlukan peningkatan akurasi. Penelitian ini bertujuan untuk mengembangkan metode spektroskopi reflektansi menggunakan kombinasi kanal spektral pada fusi data satelit penginderaan jauh resolusi resolusi spasial sangat tinggi (50 cm) dengan menerapkan koreksi spekular, masking vegetasi serta machine learning Random Forest untuk meningkatkan akurasi identifikasi jenis material atap bangunan. Metode yang dikembangkan menghasilkan akurasi untuk material aluminium, asbes, keramik, beton, genteng pasir besi dengan akurasi total 97.48% dengan nilai Kappa 0,958. Fusi data Pleiades dan Landsat-8 dilakukan untuk memperoleh data SWIR dengan panjang gelombang 2107–2294 nm dan resolusi spasial 50 cm untuk analisis spektral, sehingga identifikasi jenis material atap bangunan asbes dapat diidentifikasi dengan akurasi 95%. Koreksi spekular dan masking vegetasi meningkatkan akurasi identifikasi jenis material atap bangunan 8-12% sebagai perbaikan koreksi radiometrik dalam pengolahan data resolusi sangat tinggi.
......Identification of the type of building roof material is widely used for various application from micro weather modeling to disaster risk analysis. Research on the identification of the type of building roof material has been carried out using hyperspectral data, field data, laboratories and remote sensing satellite data still requires increased accuracy. This study aims to develop method spectroscopy reflectance using a spectral channel combination on remote sensing satellite data fusion with very high spatial resolution (50 cm) by applying specular correction, vegetation masking and Random Forest machine learning to improve the accuracy of identifying the type of building roof material. The developed method produces accuracy for aluminum, asbestos, ceramic, concrete, iron sand tiles with a total accuracy of 97.48% with a Kappa value of 0.958. Pleiades and Landsat-8 data fusion was carried out to obtain SWIR data with a wavelength of 2107–2294 nm and a spatial resolution of 50 cm for spectral analysis, so that the identification of the type of asbestos roof material can be identified with an accuracy of 95%. Specular correction and vegetation masking increase the accuracy of identifying the type of building roof material by 8-12% as an improvement in radiometric correction in very high spatial resolution (50 cm) data processing.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership Universitas Indonesia Library