Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 19 dokumen yang sesuai dengan query
cover
Ariyq Naufal Mizard
"ABSTRAK
Salah satu tantangan yang dihadapi oleh Indonesia saat ini adalah pemenuhan kebutuhan energi listrik yang terus meningkat dengan kondisi sumber energi yang semakin menipis. Salah satu solusi yang dilakukan oleh pemerintah untuk mengatasi permasalahan tersebut adalah dengan membuat peraturan yang mengutamakan penggunaan sumber energi terbarukan sebagai sumber energi listrik, salah satunya yaitu energi surya. Pemanfaatan energi surya dapat diterapkan pada tempat ibadah yang memerlukan energi listrik untuk melaksanakan ibadah dan kegiatan keagamaan lainnya. Pada penelitian ini, dilakukan sebuah studi mengenai bagaimana implementasi Pembangkit Listrik Tenaga Surya On-Grid 3,12 kWp pada Mushola Fakultas Teknik Universitas Indonesia (Mustek FTUI), Depok, Jawa Barat. Penelitian dilakukan dengan mencari tren daya dan konsumsi energi beban baik sebelum dan setelah pemasangan PLTS untuk diketahui besar penghematan listrik yang dihasilkan oleh pemasangan PLTS terhadap Mustek FTUI. Berdasarkan studi dan penelitian yang dilakukan, pemasangan PLTS 3,12 kWp pada Mushola Fakultas Teknik Universitas Indonesia menghasilkan penghematan energi listrik sebesar 32,19-55,67. Pengiriman daya yang dibangkitkan oleh PV untuk memenuhi kebutuhan Mustek umumnya terjadi pada pukul 10:00-14:00, dengan kondisi maksimal daya listrik terbesar yang dihasilkan PLTS terjadi pada pukul 11:30-13:00 sebesar 2.344 W dan daya yang diekspor menuju PLN sebesar 939 W. Sedangkan pada pukul 06:00-10:00 dan pada pukul 14:00-18:00 pengiriman daya untuk beban Mushola Fakultas Teknik umumnya berasal dari PLN.

ABSTRACT
The problem currently faced by Indonesia is to overcome the decline in fossil fuel energy sources as a source of electrical energy to overcome the increase in electricity demand. One of the solutions made by the government to overcome this problem is to make regulations that prioritize the use of renewable energy sources as a source of electricity, one of which is solar energy. The utilization of solar energy power plant can be implament in tabernacle where electricity is required the most for religious activities. In this research, a study was conducted on how the implementation and works of an 3.12 kWp On-Grid solar power system on Mushola Engineering Faculty of Universitas Indonesia, Depok, Jawa Barat. The research is done by searching the electric power and energy consumption before placing solar power plant and after plant with the purpose of knowing how much energy saving that has been done by installing solar power plant in Mushola of Engineering Faculty Universitas Indonesia. Based on the study and research that has been done, installing 3.12 kWp solar power plant to Mushola of Faculty Engineering Universitas Indonesia resulting in 32.19-55.67 electricity saving. Most of electric power that sourced from PV happened at 10:00-14:00, with at 11:30-13:00 is when the PV produced highest electric power equal to 2,344 W and export it to PLN up to 939 W. But during 06:00-10:00 and at 14:00-18:00, the electric power for Mushola of Engineering Faculty is sourced mostly from PLN.
"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alvin Saptauli
"Dalam masyarakat saat ini, evolusi besar teknologi bertanggung jawab atas konsumsi listrik yang besar baik di daerah pedesaan maupun perkotaan. Salah satu fenomena yang lahir dari situasi ini disebut kekuatan siaga. Daya siaga adalah daya yang dikonsumsi oleh alat atau perangkat saat perangkat tidak digunakan tetapi siap untuk digunakan dengan cepat. Banyak peralatan dan perangkat saat ini menggunakan daya siaga. Beberapa contoh umum termasuk pesawat televisi, komputer, periferal komputer, telepon nirkabel dan catu daya yang tidak pernah terputus. Karena peralatan ini mengkonsumsi daya saat tidak digunakan, satu-satunya cara untuk memastikan tidak ada daya yang dikonsumsi adalah dengan mencabutnya dari outlet listrik. Studi ini dibuat untuk menganalisis daya siaga yang dikonsumsi dengan berbagai situasi yang saat ini kita lalui setiap hari. Dengan mengukur tegangan, arus, daya, dan faktor daya, kita dapat menemukan daya nyata dan reaktif yang tampak di seluruh rangkaian untuk menemukan daya siaga. Melalui analisis, kita dapat menyimpulkan perangkat mana yang memiliki konsumsi daya siaga terbesar dan situasi di mana konsumsi daya siaga adalah yang tertinggi.

In today‘s society, the vast evolution of technologies is responsible for the huge consumption of electricity whether it is in a rural or urban area. One of the phenomena that birthed from this situation is called standby power. Standby power is the power consumed by an appliance or device when the device is not in use but is ready to be rapidly put into use. Many of today‘s appliances and devices use standby power. Some common examples include television sets, computers, computer peripherals, cordless telephones and uninterruptible power supplies. Because these appliances consumed power when not in use, the only way to be sure no power is being consumed is by unplugging them from the utility outlet. This study is made to analyze the standby power consumed with various situations that we currently going through every day. By measuring voltage, current, power, and power factor we can find the apparent, real, and reactive power that comes across the circuit in order to find the standby power. Through analysis, we can conclude which devices have the biggest standby power consumption and the situation where standby power consumption is the highest."
Depok: Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Azizan Billardi M
"Setiap tahun, Indonesia mengalami peningkatan jumlah pelanggan listrik, tetapi fluktuasi keadaan keandalan jaringan masih terjadi, sehingga dibutuhkan cadangan tenaga listrik berupa genset agar aktivitas dapat berjalan secara optimal. Dengan jumlah penjualan dan penyalur terbanyak, bensin masih menjadi pilihan bahan bakar genset. Pemilihan bahan bakar bensin berdasarkan angka oktan riset pun tidak bisa sembarang mengingat Indonesia telah menerapkan Bahan Bakar Standar Euro 4 dengan angka oktan riset (RON) minimal 90, sehingga untuk menggantikan Premium (RON 88), Pertalite (RON 90) dan Pertamax (RON 92) dapat menjadi pilihan. Dengan latar belakang dan potensi tersebut, pengujian bertujuan untuk mengetahui kestabilan tegangan dan frekuensi serta kinerja mesin genset dengan bahan bakar Pertalite dan Pertamax yang dilakukan dengan skenario pembebanan 25%, 50% 75%, dan 90% dari kapasitas maksimum genset. Pada parameter kestabilan tegangan dan frekuensi, tegangan untuk kedua bahan bakar memiliki jangkauan 211,8-239,8 Volt sehingga masih sesuai standar sedangkan frekuensi untuk bahan bakar Pertalite sesuai standar pada beban 1,5 kW (75%) dan 1,8 kW (90%), sedangkan Pertamax hanya pada beban 1,5 kW (75%). Pada parameter kinerja mesin, konsumsi bahan bakar spesifik Pertalite lebih hemat dengan nilai 0,67-1,34 l/kWh, sedangkan Pertamax 0,87-1,37 l/kWh. Temperatur gas buang Pertamax lebih tinggi dengan nilai mencapai 277,9 oc, sedangkan Pertalite hanya mencapai 266,1 oc. Nilai tingkat kebisingan kedua bahan bakar masih di bawah nilai ambang batas paparan kebisingan, yaitu hanya mencapai 68,6-70 dB.

Every year, Indonesia experiences an increase in the number of electricity customers, but fluctuations in the state of network reliability are still occurring, so electricity reserves are needed in the form of generators so that activities can run optimally. With the highest number of sales and distributors, gasoline is still the choice of generator fuel. The selection of gasoline based on research octane numbers cannot be arbitrary, considering that Indonesia has implemented Euro 4 Standard Fuel with a minimum research octane number (RON) of 90, so as to replace Premium (RON 88), Pertalite (RON 90) and Pertamax (RON 92) can be an option. With this background and potential, the test aimed to determine the quality of the electric power and the performance of the engine generator set with Pertalite and Pertamax fuel which was carried out with a scenario of 25%, 50% 75%, and 90% load of the maximum capacity of the generator set. In the parameters of voltage and frequency stability, the voltage for the two fuels had a range of 211.8-239.8 Volts so that both fuels met the standard while in frequency parameter, Pertalite fuel met the standard at 1.5 kW (75%) and 1.8 kW (90%) loads, while Pertamax fuel only at 1.5 kW (75%) load. In the engine performance parameters, the specific fuel consumption of Pertalite was more efficient with a value of 0.67-1.34 l/kWh, while Pertamax was 0.87-1.37 l/kWh. The exhaust gas temperature of Pertamax was higher with values ​​reaching 277.9 oc, while Pertalite only reached 266.1 oc. The value of the noise level of the both fuels was still below the threshold value of noise exposure, which only reached 68.6-70,1 dB.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Renardi Ardiya Bimantoro
"The meter which is used for measuring the energy utilises by the electric load each hour is known as the energy meter or kWh Meter. The energy is the total power consumed and utilised by the load at a particular interval of time. It is used in domestic and industrial AC circuit for measuring the power consumption. Arduino is an open-source electronics platform based on easy-to-use hardware and software. This thesis is conducted to find a way to make Arduino boards able to read inputs on a sensor, specifically in this seminar we are using Current Transformer as our sensor to measure the electricity power usage. Instrument current transformers (CTs) are widely used in various types of electrical energy measurement. Eddy current losses, losses of hysteresis, a saturation of CT, and inevitable flux leaks could lead to errors including errors in the ratio and phase angle. Improving the accuracy of CT measurement could be achieved in many ways. In this study, a bisection calibration method to overcome the error by implementing correction factor integrated with the Arduino codes is investigated. The reliability of this system has been tested in two different situations, which are a constant and variable load experiments. The result shows that the readout of the developed instrument using 100 A 50 mA CT could achieve
the deviation value of less than 2, confirming the excellence accuracy of energy meter. In order to achieve make a reliable CT based digital kWh Meter, writer conducted 3 experiment to reach error percentage below 2. The experiments are constant load experiment, non-constant load experiment, and reliability experiment. The first experiment was consist of 6 experiment with the load maintained to be constant at various level. At the beginning of the experiment we are guessing the first value of 0,2067, the number was randomly picked by writer to took the first step in continuing the bracketin method. As the result shown that the measurement value is higher than the PLN kWh meter, for that writer decided to choose the lower Design and reliability scaling factor at -0,0187 this number was picked up to see whether the correct scaling factor value region is in positive value or negative value. From the experiment 2-6 as the measurement still below the PLN measurment value, writer keep scaling up the lower scaling factor starting from -0,0187 until 0,14659 and ended up with scaling factor of 0,1766 with error percentage of 6. This result has reach writer expectation, which allow us to continue for the next experiment. The second experiment is about finding scaling factor with non-constant load. This is meant to find the right value of scaling factor when there is a change in load unexpectedly. It was consist of 6 experiments which are experiment 6 until experiment 11. During the experiment 6 until experiment 8, for the measurement value is overtaking the PLN measurement result, writer tend to reduce the scaling factor by reducing the upper scaling factor value. On the other hand, during the experiment 9 until experiment 12, for the measurement value is preceded the PLN measurement value, writer tend to increase the scaling factor by increasing the lower scaling factor value. This experiment was conducted until the error percentage below 2. The last experiment was conducted to carry out the reliability test for the device itself to handle daily use of houshold energy consumption. It using the last
value of scaling factor of experiment 11. It was conducted for almost 5 Hour. The experiment satisfied the writer expectations with error percentage of 1,923076923 which is still below 2.

Meteran yang digunakan untuk mengukur energi yang digunakan oleh beban listrik setiap jam dikenal sebagai meteran energi atau kWh Meter. Energi adalah daya total yang dikonsumsi dan digunakan oleh beban pada interval waktu tertentu. Ini digunakan dalam sirkuit AC domestik dan industri untuk mengukur konsumsi daya. Arduino adalah platform elektronik sumber terbuka yang didasarkan pada perangkat keras dan lunak yang mudah digunakan. Tesis ini dilakukan untuk menemukan cara agar papan Arduino dapat membaca input pada sensor, khususnya dalam seminar ini kami menggunakan Current Transformer sebagai sensor kami untuk mengukur penggunaan daya listrik. Instrument current transformers (CTs) banyak digunakan dalam berbagai jenis pengukuran energi listrik. Kerugian saat ini Eddy, kehilangan histeresis, saturasi CT, dan kebocoran fluks yang tak terhindarkan dapat menyebabkan kesalahan termasuk kesalahan dalam rasio dan sudut fase. Meningkatkan akurasi pengukuran CT dapat dicapai dengan banyak cara. Dalam penelitian ini, metode kalibrasi pembelahan untuk mengatasi kesalahan dengan menerapkan faktor koreksi yang terintegrasi dengan kode Arduino diselidiki. Keandalan sistem ini telah diuji dalam dua situasi yang berbeda, yaitu percobaan beban konstan dan variabel. Hasilnya menunjukkan bahwa pembacaan instrumen yang dikembangkan menggunakan 100 A/50 mA CT dapat mencapai nilai deviasi kurang dari 2, membenarkan keakuratan keunggulan meter energi. Untuk mencapai hasil kWh Meter digital berbasis CT yang andal, penulis melakukan 3 percobaan untuk mencapai persentase kesalahan di bawah 2. Eksperimen tersebut adalah eksperimen beban konstan, eksperimen beban tidak konstan, dan eksperimen reliabilitas. Eksperimen pertama terdiri dari 6 percobaan dengan beban dijaga konstan pada berbagai level. Pada awal percobaan kami menebak nilai pertama 0,2067, angka itu dipilih secara acak oleh penulis untuk mengambil langkah pertama dalam Design and reliability melanjutkan metode bracketin. Sebagai hasil menunjukkan bahwa nilai pengukuran lebih tinggi dari meter kWh PLN, untuk itu penulis memutuskan untuk memilih faktor penskalaan yang lebih rendah pada -0.0187 angka ini diambil untuk melihat apakah wilayah nilai faktor penskalaan yang benar adalah dalam nilai positif atau nilai negatif. Dari percobaan 2-6 karena pengukuran masih di bawah nilai pengukuran PLN, penulis terus meningkatkan faktor penskalaan rendah mulai dari -0.0187 hingga 0,14659 dan berakhir dengan faktor penskalaan 0,1766 dengan persentase kesalahan 6 . Hasil ini telah mencapai harapan penulis, yang memungkinkan kami untuk melanjutkan percobaan berikutnya. Eksperimen kedua adalah tentang menemukan faktor penskalaan dengan beban tidak konstan. Ini dimaksudkan untuk menemukan nilai yang tepat dari faktor penskalaan ketika ada perubahan beban secara tidak terduga. Terdiri dari 6 percobaan yaitu percobaan 6 sampai percobaan 11. Selama percobaan 6 sampai percobaan 8, untuk nilai pengukuran menyalip hasil pengukuran PLN, penulis cenderung mengurangi faktor penskalaan dengan mengurangi nilai faktor penskalaan atas. Di sisi lain, selama percobaan 9 hingga percobaan 12, untuk nilai pengukuran didahului dengan nilai pengukuran PLN, penulis cenderung meningkatkan faktor penskalaan dengan meningkatkan nilai faktor penskalaan yang lebih rendah. Eksperimen ini dilakukan hingga persentase kesalahan di bawah 2. Eksperimen terakhir dilakukan untuk melakukan uji reliabilitas untuk perangkat itu sendiri untuk menangani penggunaan konsumsi energi rumah tangga sehari-hari. Itu menggunakan nilai terakhir dari faktor skala percobaan 11. Itu dilakukan selama hampir 5 Jam. Percobaan memenuhi harapan penulis dengan persentase kesalahan 1,923076923% yang masih di bawah 2."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Himawan Nurcahyanto
"Transformer memainkan peran besar dalam distribusi energi listrik. Salah satu faktor yang menentukan tingkat keandalan transformator adalah umur transformator. Semakin sering sebuah transformator digunakan, semakin tidak dapat diandalkan transformatornya dan karena itu memperpendek umurnya. Tujuan dari penelitian ini adalah untuk memprediksi umur transformator berdasarkan perhitungan transformator indeks kesehatan yang kemudian dimodelkan menggunakan jaringan saraf tiruan.
Hasil dari penelitian ini adalah nilai-nilai yang digunakan sebagai parameter dalam pengujian transformator yaitu isolasi minyak, furan, dan gas terlarut. Salah satu kelebihan metode jaringan saraf tiruan dalam memprediksi usia transformator adalah kesalahan perhitungan yang dapat diminimalisir.
Dari hasil penelitian ini, ditemukan bahwa hasil prediksi menggunakan jaringan saraf tiruan dan kondisi asli transformator berdasarkan indeks kesehatan transformator memiliki nilai yang hampir sama, sehingga dapat dikatakan bahwa sistem prediksi usia transformator sudah dapat digunakan langsung untuk menentukan usia transformator lain, baik yang baru maupun yang sudah beroperasi, dengan persentase kesalahan yang rendah. Selanjutnya, metode ini dapat digunakan sebagai opsi dalam mempertahankan transformator daya.

Transformers play a big role in the distribution of electrical energy. One factor that determines the level of reliability of the transformer is the life of the transformer. The more often a transformer is used, the more unreliable the transformer and therefore shortens its life. The purpose of this study is to predict the life of the transformer based on the calculation of the transformer health index which is then modeled using an artificial neural network.
The results of this study are the values ​​used as parameters in transformer testing, namely the isolation of oil, furan, and dissolved gas. One of the advantages of artificial neural network methods in predicting the age of a transformer is a calculation error that can be minimized.
From the results of this study, it was found that the prediction results using artificial neural networks and the original condition of the transformer based on the transformer health index have almost the same value, so it can be said that the transformer age prediction system can be used directly to determine the age of other transformers, both new and already operating, with a low error percentage. Furthermore, this method can be used as an option in maintaining power transformers.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Haidar Ali
"Energi listrik merupakan sumber energi yang penting bagi kehidupan manusia. Saat ini permintaan tenaga listrik terus meningkat, namun disaat yang sama perluasan pembangkit tenaga listrik dan pembangunan saluran transmisi cukup terbatas. Oleh karena itu, terjadi pola pembebanan yang dipaksakan pada pembangkit tenaga listrik dan transmisi yang terlampau berat. Pembebanan yang dipaksakan dapat menyebabkan gangguan pada saluran transmisi yang dapat mengakibatkan lepasnya saluran transmisi, sehingga terjadi penurunan tegangan pada sistem tenaga listrik.
Lokasi penelitian yang dilakukan adalah pada Subsistem Cibatu34-Mandirancan. Terdapat jatuh tegangan yang cukup besar ketika 2 saluran transmisi Indramayu-Kosambibaru lepas. Lepasnya 2 saluran transmisi tersebut menyebabkan 14 dari 17 gardu induk mengalami penurunan tegangan hingga dibawah 5 mengacu pada standar IEEE/ANSI C84.1. Maka, dilakukan pemasangan teknologi Flexible AC Transmission System (FACTS) berupa Static Synchronous Compensator (STATCOM) pada subsistem Cibatu34-Mandirancan untuk mengatasi permasalahan tersebut.
Pada penelitian ini, didapati penempatan STATCOM paling optimum pada subsistem Cibatu34-Mandirancan yaitu pada gardu induk Dawuan dan Haergeulis dengan masing-masing injeksi daya reaktif sebesar 175 MVAr dan 175 MVAr sehingga terjadi perbaikan profil tegangan pada seluruh Gardu Induk subsistem Cibatu34-Mandirancan hingga sesuai standar IEEE ANSI C84.1 yaitu adalah 5.

Electrical energy is an important source of energy for human life. Nowadays, the demand for electricity continues to increase, but at the same time the expansion of power plants and the construction of transmission lines are quite limited. Therefore, forced loading occurs on the power plants and the transmission lines are too heavy. Forced loading may cause disturbances on the transmission lines which may lead to the release of the transmission lines, and lead to voltage drop on the power system.
The location of the research is in the Cibatu34-Mandirancan subsystem. There is a significant voltage drop when two of Indramayu-Kosambibaru transmission lines are released. The release of these two transmission lines causes 14 of the 17 substations to experience a voltage drop below 5 according to the IEEE ANSI C84.1 standard. In this manner, a Flexible AC Transmission System (FACTS) device such as Static Synchronous Compensator (STATCOM) is installed in the Cibatu3&4-Mandirancan subsystem to overcome these issues.
In this study, the most optimal STATCOM placement in the Cibatu34-Mandirancan subsystem is found at Dawuan and Haergeulis substations with reactive power injections of 175 MVAr and 175 MVAr respectively so that the voltage profile improves in all substations of Cibatu34-Mandirancan subsystem up to IEEE ANSI C84.1 standard which is 5.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adji Prastiantono
"ABSTRAK
Berdasarkan RUPTL 2018, Indonesia menargetkan pengembangan pembangkit EBT sebesar 23% pada tahun 2025. Dengan kondisi beriklim tropis, Indonesia merupakan negara yang memiliki potensi cukup besar untuk menggunakan sel surya sebagai pembangkit EBT. Akan tetapi, dalam penggunaannya, sel surya memiliki kendala yang dapat merugikan, yaitu sifat intermiten. Kendala tersebut dapat diatasi dengan cara perencanaan yang bertujuan untuk mengoptimalkan kinerja sel surya. Perencanaan dalam penelitian ini berupa hasil pengukuran aktual dari iradiasi surya berbasis data kondisi lingkungan sekitar, seperti temperatur, kelembapan relatif, curah hujan, dan intensitas UV. Data tersebut kemudian diolah menggunakan metode Ordinary Least Square (OLS). Tujuan dilakukannya penelitian ini yaitu mendapatkan nilai iradiasi surya yang akurat sehingga dapat digunakan dalam perencanaan pengoptimalan sel surya. Alat ini memiliki nilai eror sebesar 18,9% yang dihitung memnggunakan metode MAPE dengan menggunakan Solar Power Meter sebagai nilai aktual.

ABSTRACT
Based on the 2018 RUPTL, Indonesia targets the development of renewable energy plants reach 23 on 2025. With a tropical climate, Indonesia is a country that has considerable potential to use photovoltaic as a renewable energy. But in its use, photovoltaic has an obstacle that can be detrimental namely intermittent properties. These constraints can be overcome by means of planning that aims to optimize photovoltaic performance. Planning in this study is in the form of actual measurement results from solar irradiance with data based on surrounding environmental conditions such as temperature, relative humidity, rainfall, and UV intensity. Then the data is processed using the Ordinary Least Square (OLS) method. The purpose of this study is to obtain accurate solar irradiance values so that they can be used in planning photovoltaic optimization. This measurement has an error value of 18.9 which is calculated using the MAPE method by using Solar Power Meter as the actual value."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sarah Afifah
"Transformator merupakan komponen utama dalam sistem distribusi tenaga listrik ke konsumen, jika terjadi kerusakan pada transformator maka penyaluran tenaga listrik menuju konsumen akan terhenti sehingga SAIDI dan SAIFI dari PLN akan meningkat. Tingginya suhu pada transformator dapat menyebabkan degradasi pada isolasi transformator. Ketika suhu pada kumparan naik sampai batas 110 C maka akan terjadi degradasi pada isolator dan sisa umur dari transformator akan berkurang. Kerusakan transformator dapat menyebabkan gangguan pada sistem tenaga listrik dan menimbulkan kerugian ekonomi yang sangat besar. Sebelum transformator mengalami kerusakan harus dilakukan penggantian secara efisien hingga transformator benar-benar dikategorikan tidak efisien lagi untuk digunakan, hal ini dapat dilakukan dengan mengganti transformator yang akan mengalami kerusakan. Prediksi rentang waktu transformator beroperasi secara efisien dan normal sebelum terjadi kerusakan dapat dilakukan dengan menggunakan pemodelan termal. Standar pemodelan termal yang digunakan merupakan standar yang dikeluarkan oleh IEEE (IEEE std C57.91-1995). Parameter utama yang digunakan dalam memprediksi umur ini adalah Hot Spot Temperature (HST). Nilai perolehan HST dihitung menggunakan software MATLAB dengan standar perhitungan Annex G yang sesuai dengan standar IEEE. Dengan memperoleh HST usia pakai transformator dapat ditentukan. Penelitian ini melihat pengaruh dari pembebanan, suhu hot-spot, dan suhu ruang terhadap umur pakai transformator. Semakin nilai dari ketiga faktor tersebut maka semakin cepat transformator akan rusak, dengan persen pengurangan umur transformator yang akan meningkat secara eksponensial. Pemberian nilai pembebanan, suhu hot-spot, dan suhu ruang tertinggi pada penelitian ini memberikan persentase pengurangan umur sebesar 0.0888332, 0.0193394, dan 0.020753 secara berurutan.

Transformer is one of the main components in distribution system of electrical power system towards the consumers, thereby any damage to the transformers will hinder the distribution of electricity towards the consumers, and in turn will make the SAIDI and SAIFI levels go up. High temperature in transformers can cause degradation in the insulation of transformers which in turn will cause failure in transformers. When the temperature in winding reaches or goes beyond the limit of 110 C, a degradation in insulation will start happening and the remaining life of transformers will decrease. Damage in transformers will cause disturbance in electrical power system and result in a major economic loss. Before damages occur, transformers need to be changed up until it is deemed to be no longer efficient, this can be done by replacing the transformer that is about to be damaged. To predict when a transformer is about to break, a calculation is made based on thermal modelling according to IEEE Std C57.91-1995 with its most prominent variable being Hot Spot Temperature (HST). HST is obtained by MATLAB programming using Annex G of IEEE Std. C57.91-1995. By obtaining HST thus the remaining lifetime of transformers can be predicted. This research analysed the effect of loading, hot-spot temperature, and ambient temperature on the remaining lifetime of a transformer. The higher those three factors are, the quicker the transformer will break, with loss of life percentage increasing exponentially. The highest loading, hot spot temperature, and ambient temperature given in this research gives percent loss of life 0.0888332, 0.0193394, 0.020753 respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Adi Nugroho
"Dalam sistem tenaga listrik yang kompleks, terjadinya ganggan short circuit dapat timbul kapan saja. Dampak dari gangguan tersebut akan semakin parah dan berpengaruh terhadap kestabilan sistem yang ada. Pada sistem tenaga listrik Pacitan, terdapat jalur transmisi pembangkit yang merupakan jalur utama penyaluran daya aktif dari pembangkit menuju gardu-gardu induk di sekitarnya. Oleh karenanya, jalur tersebut harus diminimalisir dampak dari gangguannya. Selain itu, kapasitas cadangan dari PLTU Pacitan masih tersisa banyak untuk menyuplai beban-beban yang berlebih dan perencanaan beban yang akan mendatang. Namun, apabila kapasitas standar pembangkit ditingkatkan akan terjadi ketidakstabilan pada sudut rotor maupun daya aktif pembangkitnya. Oleh karena itu, Unified Power Flow Controller (UPFC) salah satu divais Flexible AC Transmission System (FACTS) merupakah jawaban dari kedua permasalahan tersebut. Dengan pemasangan UPFC, kestabilan dari sudut rotor dan osilasi daya aktif pembangkit dapat teredam sehingga masih dalam ambang stabil. Injeksi yang diberikan UPFC kepada sistem berupa daya reaktif dan tegangan p.u pada saluran transmisi PLTU Pacitan-Nguntoronadi dengan menganut pemasangan dengan impedansi paling besar juga memberikan keunggulan dalam menangani bus-bus yang undervoltage serta pemerataan aliran daya aktif saat pembangkit ditingkatkan 10 MW dari kapasitas standarnya.

In complex electric power systems, the occurrence of a short circuit can occur at any time. The impact of these disturbances will be more severe and affect the stability of the existing system. In the Pacitan power system, there is a generator transmission line which is the main channel for channeling active power from the generator to the surrounding substations. Therefore, the pathway must be minimized from the impact. Apart from that, there is still a lot of spare capacity from the PLTU PLTU to supply excessive loads and plan future loads. However, if the standard capacity of the generator is increased there will be instability in the rotor angle and the active power of the generator. Therefore, the Unified Power Flow Controller (UPFC), one of the Flexible AC Transmission System (FACTS) devices, is the answer to these two problems. With the installation of UPFC, the stability of the rotor angle and generator active oscillation can be damped so that it is still in a stable threshold. The injection given by UPFC to the system in the form of reactive power and p.u voltage on the transmission line of the Pacitan-Nguntoronadi PLTU with the highest impedance installation also provides advantages in handling undervoltage buses and even distribution of active power when the plant is increased by 10 MW from its standard capacity."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Arkhan Pradanugraha
"Gedung K FTUI memiliki beberapa ruang perkuliahan yang masih kurang dalam tingkat pencahayaan ruang. Studi ini bertujuan untuk mengganti sumber penerangan menggunakan lampu LED pada ruang perkuliahan sesuai standar pencahayaan yang berlaku, hemat energi, dan mengetahui biaya investasi dan operasional penerangan dalam ruang perkuliahan. Skenario penggantian pertama adalah mengganti jenis lampu tanpa merubah titik lampu yang telah terpasang. Skenario pertama ini berlaku pada ruang yang sesuai standar pencahayaan namun mengalami boros energi. Skenario penggantian kedua adalah mengganti jenis lampu dan titik lampu. Skenario kedua ini berlaku pada ruang yang belum sesuai dengan standar pencahayaan yang berlaku. Standar pencahayaan yang digunakan dalam penelitian ini adalah SNI 03-6575-2001 tingkat pencahayaan ruang kuliah sebesar 250 lux. Lampu dalam penelitian adalah lampu X dengan arus cahaya sebesar 2.500 lumen. Hasil audit penelitian ini adalah tingkat pencahayaan terendah 164 lux di ruang K205 dan tertinggi adalah 385 lux di ruang K106. Analisis arus cahaya menunjukkan jumlah lampu ideal ruang kuliah kecil adalah 16 buah dan ruang kuliah besar adalah 28 buah. Hasil analisis tingkat pencahayaan ruang menunjukkan perubahan tingkat pencahayaan tertinggi pada ruang K205 dari 164 lux menjadi 294 lux. Hasil analisis konsumsi daya menunjukkan pada kondisi eksisting adalah 11.200 watt dan pada kondisi skenario penggantian 1 dan 2 adalah 6.696 watt. Hasil analisis konsumsi energi menunjukkan pada kondisi eksisting adalah 2.240 KWh dan pada kondisi skenario penggantian adalah 1.339,2 KWh. Hasil analisis biaya skenario penggantian menunjukkan biaya investasi sebesar Rp128.629.000,00 dan persentase penghematan biaya operasional sebesar 29,21%.

Building FTUI has several lecture halls which are still lacking in the level of room lighting. This study aims to replace the lighting sources using LED light in the lecture room according to applicable lighting standards, energy saving, and know the cost of installation and operation lighting in a lecture room. This research method uses of two scenarios. The first replacement scenario is to change the type of lamp without changing the installed light points. The first scenario applies to spaces that are in accordance with lighting standards but experience energy waste. The second replacement scenario is to replace the type of lamp and the point of the lamp. This second scenario applies to spaces that are not in accordance with applicable lighting standards. The lighting standard used in this study is SNI 03-6575-2001 for the lighting level of lecture rooms by 250 lux. The audit results of this study are the lowest lighting level of 164 lux in room K205 and the highest is 385 lux in room K106. Light current analysis shows ideal number of lamps for small lecture halls are 16 and large lecture halls are 28. The results of the analysis of the room lighting level showed change in the highest lighting level in the K205 from 164 lux to 294 lux. The result of the analysis of power consumption show that the existing conditions are 11.200 watts and the replacement scenario are 6.696 watts. The result of the energy consumption analysis show that the existing condition is 2.240 KWh and the replacement scenario is 1.339,2 KWh. The result of the replacement analysis show the installation costs are Rp128.629.000,00 and the percentage of operational cost savings of 29,21%."
Depok: Fakultas Teknik Universitas Indonesia , 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>