Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 55 dokumen yang sesuai dengan query
cover
Ainul Rochman
"Sistem distribusi AC telah lama dipilih sebagai sistem distribusi yang handal karena mempunyai kelebihan dalam hal konversi tegangan. Namun demikian, penerapan sistem AC ini menyebabkan perlunya penggunaan konverter AC-DC pada setiap beban DC baik pada rumah tangga, fasilitas komersial, maupun perkantoran. Penggunaan konverter AC-DC ini menimbulkan adanya rugi-rugi konversi dimana rugi-rugi konversi ini dapat semakin meningkat seiring dengan meningkatnya penggunaan beban-beban DC. Skripsi ini membahas tentang perbandingan jatuh tegangan dan rugi daya pada sistem AC dan DC serta membahas tentang rugi-rugi konversi yang ada pada konverter AC-DC dari laptop dan ponsel. Selain itu, juga dipaparkan beberapa topologi sistem DC pada rumah tangga yang dapat menjadi alternatif untuk permasalahan rugi-rugi konversi yang ada pada sistem AC. Dari hasil pengukuran, pada AC Adapter laptop yang diuji, didapatkan bahwa konverter AC-DC ini memiliki rugi-rugi 1 W hingga 5 W dengan efisiensi rata-rata 94 %. Sedangkan pada AC Adapter ponsel yang diuji, rugi-rugi konversi rata-rata yang dihasilkan 0,6 W dengan efisiensi rata-rata 78 %.

AC system has been chosen as a reliable distribution system due to advantages in terms of voltage conversion. However, the AC system application led to the need for the use of AC-DC converters on each DC load on the residential, commercial facilities, and offices. The use of AC-DC converters led to the conversion losses where it can be increased along with increased use of DC loads. This paper discusses comparison of voltage drop and power losses between AC and DC systems and also discusses conversion losses that exist in the AC-DC converters of DC loads, especially in AC Adapter of laptops and mobile phones. Moreover, some of DC system topologies for the household that may be alternative solutions due to the conversion losses problem in existing AC system are also discussed. From the measurement results, it was found that conversion losses of AC Adapter of laptop 1 W up to 5 W with an average efficiency of 94 %. While in AC Adapter of mobile phones tested 0,6 W with an average efficiency of 78%."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42314
UI - Skripsi Open  Universitas Indonesia Library
cover
Saut Mariang LG
"Peningkatan kebutuhan energi listrik, baik kebutuhan industri maupun kebutuhan rumah tangga, sekarang ini tidak dapat diimbangi dengan peningkatan suplai energi listrik dari perusahaan listrik. Penggunaan energi terbarukan yang diintegrasikan ke dalam rumah, yang kemudian disebut rumah cerdas, merupakan alternatif yang sangat menjanjikan untuk mengatasi krisis energi listrik. Rumah cerdas yang berinterkoneksi dengan jaringan distribusi tenaga listrik menjadi alternatif memenuhi kebutuhan energi listrik pada area yang lebih luas. Dengan dilakukannya interkoneksi ini, rumah cerdas pada masa yang akan datang dapat menjadi sarana untuk menghasilkan pendapatan dengan adanya proses jual-beli energi listrik yang mana proses perhitungannya menggunakan SCADA software.
Data hasil produksi energi listrik rumah cerdas maupun jumlah energi listrik yang dikonsumsi dari perusahaan listrik akan direkam dalam sebuah komputer yang mana komputer ini akan difungsikan sebagai web server sehingga dapat dimonitoring dari jarak jauh. Komputer server dapat diakses melalui jaringan internet.

Improved electrical energy needs, both industrial needs and the needs of households, this current cannot be offset by an increase in the supply of electrical energy from the electric company. Using renewable energy which is integrated into the house, which is then called smart house, is a very promising alternative to overcome the crisis of electricity. Smart home networks that interconnect with the electric power distribution grid become an alternative to meet of the needs in a wider area. By doing this interconnection, smart house in the future can be a meaning to generate revenue with the process of buying and selling of electric energy in which the calculation using the SCADA software.
Data produced from electric energy smart house and the amount of electrical energy consumed from the power company will be recorded in a computer which will function as a web server so it can be monitored remotely. The computer server can be accessed through the Internet.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42678
UI - Skripsi Open  Universitas Indonesia Library
cover
Akhmad Kalmin
"Sel surya merupakan teknologi yang mengubah energi matahari menjadi energi listrik secara langsung. Sel surya inilah yang popular dikembangkan sebagai solusi untuk mengurangi ketergantungan penggunaan sumber energi dari bahan bakar fosil untuk menghasilkan energi listrik dan pencemaran lingkungan yang diakibatkan penggunaan bahan bakar fosil. Untuk aplikasi yang sebenarnya, sel surya dalam jumlah yang banyak saling dihubungkan dan disatukan menjadi satu unit yang disebut sebagai modul surya. Modul surya yang beredar dipasaran memiliki spesifikasi tertentu. Spesifikasi tersebut dapat digunakan untuk pembuatan model modul surya dan memverifikasinya. Setelah dilakukan verifikasi, hasil menunjukkan bahwa model yang dibuat cukup bagus.
Permasalahan yang muncul dalam penggunaan modul surya adalah kekontinyuan tegangan keluaran dari modul surya inilah yang menjadi masalah. Oleh karena itu, dibutuhkan simulasi untuk membuat tegangan keluaran dari modul surya menjadi kontinyu meskipun intensitas radiasi matahari berubah-ubah. Salah satunya dengan memakai konverter penaik tegangan. Dalam simulasi tegangan keluaran model modul surya yang dibuat memiliki nilai yang bervariasi yaitu diantara 13 sampai 18 volt. Sedangkan boost converter yang disimulasikan adalah konvertor yang menaikkan tegangan dari 12 volt ke 254 volt. Karena itu diperlukan pengatur tegangan yang dapat membuat tegangan keluaran dari modul surya menjadi 12 volt. Dengan adanya pengatur tegangan, boost converter memiliki tegangan keluaran yang konstan yaitu 254 volt meskipun tegangan keluaran dari modul surya yang merupakan masukan untuk boost converter berubah-ubah sebagai akibat pengaruh perubahan intensitas radiasi dan perubahan temperatur kerja.

Solar cell is a technology that converts solar energy into electrical energy directly. This is a popular solar cell was developed as a solution to reduce dependence on the use of energy sources from fossil fuels to generate electrical energy and environmental pollution caused by fossil fuel use. For actual applications, solar cells in large numbers are connected each other and incorporated into one unit called a solar module. Solar modules on the market have certain specifications. These specifications can be used for the manufacture of solar modules model and verify it. After verification, the results indicate that the model is very good.
The problems that arise in the use of solar module is continuity of output voltage of the solar modules. Therefore, simulation is necessary to make the output voltage of solar module to be continuous even though the intensity of solar radiation varies. One of them by using a voltage boost converter. In the simulation, output voltage of model of the solar module created has a value that varies between 13 to 18 volts. While the simulated boost converter is a 12 V to 254 V boost converter. Hence, a voltage regulator that can make the output voltage of the solar modules to 12 volts is needed. With the voltage regulator, boost converter has a constant output voltage is 254 volts even though the voltage input of boost converter varies due to the influence of changes in the intensity of radiation and work temperature.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42093
UI - Skripsi Open  Universitas Indonesia Library
cover
Situmorang, Leonardo
"Sumber-sumber energi terbarukan yang menghasilkan energi listrik disatukan dalam sistem DC Mikrogrid. Sebenarnya energi listrik yang dihasilkan masih bersifat fluktuatif sehingga belum sepenuhnya bisa diandalkan agar sistem DC Mikrogrid dapat berjalan secara kontinu. Untuk menjamin kehandalannya, maka DC Mikrogrid akan dihubungkan ke jaringan utilitas (PLN) sehingga ketika DC Mikrogrid kekurangan daya listrik dapat menerima dari PLN sebaliknya jika DC Mikrogrid memiliki daya listrik yang lebih, DC Mikrogrid dapat mensuplai ke PLN, dengan demikian dapat terjadi transfer daya listrik antara kedua sistem tersebut. Untuk itu diperlukan alat yang dapat menghubungkan kedua sistem tersebut yaitu bi-directional inverter.
Bi-directional inverter adalah konverter yang dapat mengubah tegangan DC menjadi tegangan AC ataupun sebaliknya.Dalam skripsi ini akan dibuat konfigurasi yang terdiri dari alat-alat rectifier, boost konverter, buck konverter dan grid tie inverter menjadi sebuah bi-directional inverter. Untuk pengujian kapasitas dan efisiensi alat ini, digunakan beban lampu dengan daya masing masing sekitar 7W. Pengukuran daya diambil pada keluaran dari boost konverter dan grid tie inverter.

Renewable energy sources that generate electricity are incorporated in the DC system Microgrid. Actual electrical energy generated is still fluctuating so that is not fully reliable for the system DC Microgrid can run continuously. To ensure reliability, the DC Microgrid will be connected to a network utility (PLN) so that when the DC power shortage Microgrid can receive from PLN vice versa if the DC Microgrid have more power, DC Microgrid can supply to PLN, thus the power transfer can occur between the two systems. It required a tool that can connect the two systems is bi-directional inverter.
Bi-directional inverter is a converter that can convert DC voltage into AC voltage or otherwise. In this thesis will be the configuration consisting of tools rectifier, boost converter, buck converter and grid tie inverter into a bi-directional inverter. To test the capacity and efficiency of this tool, used to power the lamp load each about 7W. Power measurement is taken at the output of the boost converter and grid tie inverter.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42137
UI - Skripsi Open  Universitas Indonesia Library
cover
Ikrar Mahardhika Pramono
"Transformer is a device that transfers electric energy from one alternating-current circuit to one or more other circuits, either increasing (stepping up) or reducing (stepping down) the voltage. Transformers act through electromagnetic induction; current in the primary coil induces current in the secondary coil. The use of transformers includes reducing the line voltage to operate low-voltage devices (doorbells or toy electric trains) and raising the voltage from electric generators so that electric power can be transmitted over long distances.
Power electronics is a rapidly growing technology encompassing a large variety of applications including automotive, telecommunications, computers and alternative energy system. Traditionally, transformer design has been based on voltage and current operating in low frequency. In switching circuit (SMPS) transformer works at high frequencies which led to considerable reductions in the size of magnetic component. The type of signals to be transferred from the primary to secondary windings dictate the type of transformer that most suitable to the application. Operation of a transformer at higher frequencies will lead reduced magnetizing inductance compared to lower frequencies.
This project is aimed to analyse and design a transformer purposed for high frequency uses. The expected outcomes of this project are defining the design factor of a high frequency inductors and transformers. Modelling and simulation of the transformer will be performed as part of this project, along with design approach and design factor."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S45706
UI - Skripsi Open  Universitas Indonesia Library
cover
Inggrid Audia
"Penggunaan pembangkit listrik energi terbarukan belum dapat diandalkan karena sumbernya tergantung pada kondisi lingkungan. Microgrid dapat menjadi solusi untuk masalah yang dimiliki oleh pembangkit listrik energi terbarukan karena mereka dapat mengintegrasikan beberapa sumber energi baik dari jaringan utama maupun dari pembangkit listrik energi terbarukan. Microgrid membutuhkan simulasi untuk menganalisis sistem sebelum diterapkan.
Penelitian ini memodelkan dan merancang simulasi Microgrid Berbasis Inverter menggunakan perangkat lunak MATLAB / Simulink. Setiap sub-modul dimodelkan dalam bentuk ruang-negara dan semua digabungkan pada frekuensi referensi umum. Dalam model ini tiga Generasi Terdistribusi (DG) digunakan dan setiap DG mensimulasikan sumber energi terbarukan. Dalam simulasi, tiga percobaan berbeda dilakukan, yaitu perubahan tegangan referensi, beban, dan konstanta pengontrol untuk melihat respons sistem terhadap berbagai perubahan.
Diperoleh bahwa sistem Microgrid mampu mengikuti perubahan pada kedua nilai beban pasir tegangan referensi. Model keseluruhan microgrid juga linierisasi dan matriks sistem digunakan untuk memperoleh nilai eigen. Nilai eigen menunjukkan bahwa konstanta pengontrol mempengaruhi stabilitas sistem. Nilai untuk setiap konstanta harus dipilih yang paling cocok dengan sistem, karena setiap konstanta pengontrol memiliki dampak yang berbeda pada respons transien sistem.

The use of renewable energy power plants cannot be relied upon because the source depends on environmental conditions. Microgrids can be a solution to problems that are owned by renewable energy power plants because they can integrate several energy sources both from the main grid and from renewable energy power plants. Microgrid requires a simulation to analyze the system before it is implemented.
This study models and designs an Inverter-based Microgrid simulation using MATLAB / Simulink software. Each sub-module is modeled in the form of space-state and all are combined at a common reference frequency. In this model three Distributed Generations (DG) are used and each DG simulates a renewable energy source. In simulations, three different experiments are carried out, namely changes in reference voltage, load, and controller constants to see the system's response to various changes.
It was found that the Microgrid system was able to keep up with changes in both the reference voltage sand load values. The overall microgrid model is also linearized and the system matrix is ​​used to obtain the eigenvalue. Eigenvalues ​​indicate that the controller constant affects the stability of the system. The value for each constant must be chosen that best matches the system, because each controller constant has a different impact on the transient response of the system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifka Sofianita
"

Penelitian ini mempelajari analisis ekonomi dan potensi dampak lingkungan penggunaan PLTS dan PLTB yang diyakini tidak menghasilkan emisi selama memproduksi listrik. Untuk analisis ekonomi menggunakan metode LCC dan LCOE. Metode LCA digunakan untuk menghitung potensi dampak lingkungan dari sistem PLTS dan PLTB off grid menggunakan baterai. Hasil penelitian untuk analisis ekonomi menyebutkan biaya LCC PLTS lebih rendah dibanding PLTB, dengan biaya LCC PLTS sebesar Rp 724.448.306, sedangkan biaya LCC PLTB Rp 1.834.313.012. LCOE dari PLTS juga lebih rendah dibanding PLTB, dengan LCOE PLTS sebesar Rp 2.542/kWh, sedangkan biaya LCOE PLTB Rp 6.445/kWh. Potensi dampak lingkungan pada PLTS dan PLTB di Kampung Bungin menggunakan software Simapro menggunakan metode CML IA, didapatkan kategori GWP PLTS 0.09 kg CO2 eq/kWh dan GWP PLTB 0.176 kg CO2 eq/kWh. EBT yang sesuai di Kampung Bungin berdasarkan analisa ekonomi dengan biaya LCOE yang rendah dan analisa berdasarkan potensi dampak lingkungan adalah PLTS.


This study studied economic analysis and the potential environmental impacts of using solar power plants and power plants which are believed to produce no emissions during electricity production. For economic analysis use the LCC and LCOE methods. The LCA method is used to calculate the potential environmental impact of the solar power plant and off grid wind turbine power plant systems using batteries. The results of the study for economic analysis stated that the cost of LCC solar power plant was lower than wind turbine power plant, with the cost of LCC solar power plant amounting to Rp 724,448,306, while the cost of LCC wind turbine power plant was Rp. LCOE from solar power plant is also lower than PLTB, with LCOE solar power plant of Rp 2,542 / kWh, while LCOE wind turbine power plant costs Rp 6.445 / kWh. Potential environmental impacts on solar power plant and wind turbine power plant in Bungin Village using Simapro software using the CML IA method, obtained GWP solar power plant category 0.09 kg CO2 eq / kWh and GWP PLTB 0.176 kg CO2 eq / kWh. The appropriate renewable energy in Bungin Village is based on economic analysis with low LCOE costs and analysis based on potential environmental impacts is solar power plant.

"
2019
T53322
UI - Tesis Membership  Universitas Indonesia Library
cover
Dendang Bayu Aji
"Kampung Bungin, Bekasi memiliki potensi energi terbarukan (ET) yang cukup banyak. Potensi ET di Kamoung Bungin berupa energi matahari dan energi angin. Energi ini dapat ditangkap untuk menghasilkan energi dengan menggunakan pembangkit listrik angin, surya maupun perpaduan anatara kedua (hibrida). Setelah menghitung potensi energi, didapatkan hasil berupa jumlah unit modul PV ataupun unit turbin angin yang akan diimplementasikan dalam PLTB, PLTS dan sistem pembangkit hibrida. Dalam menghitung spesifikasi pembangkit listrik PLTS, PLTB dan sistem hibrida, dilakukan analisis ekonomi dengan life cycle costing untuk menentukan indikator performa ekonomi berupa LCC (Life Cycle Cost) dan LCOE (Levelized Cost of Energy) serta mencari potensi di masa depan dalam bentuk keseimbangan gardu atau grid parity. Diharapkan ditemukan pembangkit dengan nilai LCC dan LCOE terendah sebagai pembangkit yang paling optimal untuk diimplementasikan di Kampung Bungin, Bekasi.

Bungin Village, located in Bekasi, has a large potential for renewable energy. The largest potentials for renewable enrgy in Bungin Village come in the form of wind and solar energy. These energies can be harnessed through solar, wind or even hybrid power plants. After calculating the energy potential, the requirements for the units of turbines and/or PV panels in wind, solar and hybrid power plants are acquired. When calculating the specifications for the power plants, an economic analysis using Life Cycle Costing is used to determine economic performance indicators in Life Cycle Cost and Levelized Cost of Energy as well as finding the future prospect of the LCOE in the form of grid parity. It is hoped that the power plant with the lowest LCC and LCOE can be the optimum choice for the power plant in Bungin Village, Bekasi."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bernadeta Giovana Nera De Marsela
"Manggarai Barat adalah kabupaten dengan bentuk kepulauan di Indonesia. Sistem kelistrikan yang ada pada Kabupaten tersebut masih didomunasi oleh pembangkit berbahan bakar fosil. Tujuan studi ini adalah melakukan desain sistem kelistrikan berbasis energi terbarukan hibrida yang terdiri atas Solar PV, angin, panas bumi, dan BESS. Kebutuhan energi listrik akan mencakup sektor residensial, komersial, desalinasi, dan kendaraan listrik. Optimisasi dilakukan dengan piranti lunak HOMER untuk memperoleh Net Present Cost paling rendah tanpa dan dengan adanya skenario interkoneksi untuk 3 pulau. Hasil untuk skenario non interkoneksi menghasilkan NPC sebesar 282,644,479.06 USD dengan sistem kelistrikan hibrida berupa 39.93 MW Solar PV, 56 MW turbin angin, 28.3 MWh BESS, dan impor listrik sebesar 29,194,37MWh panas bumi dari grid (per tahun). Skenario dengan interkoneksi mengasilkan NPC yang lebih tinggi dibandingkan skenario tanpa interkoneksi (299,770,404.04 USD) dengan bauran pembangkit 29.35 MW Solar PV, 59.2 MW turbin angin, 50 MWh BESS, dan impor listrik sebesar 26,566.59 MWh panas bumi dari grid (per tahun). Skenario non-interkoneksi menjadi opsi dengan biaya yang lebih rendah, namun masih relatif tinggi terhadap tarif tenaga listrik yang ada di Indonesia.

West Manggarai is a multi-island regency in east Indonesia. The existing electricity system is still dominated by fossil based-power systems. The aim of the study is to design 100% Hybrid Renewable Energy System of Solar PV, wind, geothermal, and BESS. The electricity demand covers residential, commercial, desalination, and electric vehicle. Optimization is conducted by using HOMER software with the objective function to obtain the lowest Net Present Cost (NPC) in 2025 with and without an interconnection scenario among the three main islands. The result of hybrid system for the nointerconnection scenario has the lowest NPC of 282,644,479.06 USD with 39.93 MW Solar PV, 56 MW Wind power, 28.3 MWh BESS, 29,194,37MWh of of net import from geothermal grid and also 14.02 MW inverter. The interconnection scenario has a higher NPC of 299,770,404 USD with 29.35 MW Solar PV, 59.2 MW Wind power, 50 MWh BESS, 26,566.59 MWh geothermal grid net (yearly), and also 35 MW inverter. No Interconnection scenario prived lower cost, but the tariff is still higher than the existing regulated electricity tariff in Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Suryo Utomo
"Ratifikasi United Nation Framework Convention on Climate Change (UNFCCC) dan Protokol Kyoto oleh Pemerintah Indonesia melalui Undang-Undang Nomor 6/1994 dan Undang-Undang Nomor 17/2004 memberikan peluang bagi Indonesia untuk dapat berpartisipasi dalam upaya dunia mengatasi masalah perubahan iklim akibat pemanasan global. Perwujudan dari partisipasi tersebut antara lain dengan terlibat dalam Clean Development Mechanism (CDM) di sektor energi melalui pengembangan pembangkit listrik tenaga panas bumi (PLTP) di sistem ketenagalistrikan Jawa-Madura-Bali (JAMALI). Tulisan ini menentukan kelayakan suatu PLTP untuk dijadikan proyek CDM dengan membandingkan IRR dari suatu PLTP dengan MARR-nya. Hasil analisis pada tulisan ini menghasilkan kesimpulan bahwa PLTP yang paling layak dikembangkan adalah PLTP Salak Tahap I dengan kapasitas 165 MW.

Ratification of UNFCCC and Kyoto Protocol by the Government of Indonesia trough Law Number 6/1994 and Law Number 17/2004 give the opportunity to Indonesia to participate with the world effort in solving the climate change problems caused by global warming. The form of that participation is by being involved on the Clean Development Mechanism (CDM) in energy sector trough the development of geothermal power plant in Jawa-Madura-Bali (JAMALI) power system. This writing determines the feasibility of geothermal power plant to be proposed as a CDM project by compare its IRR and MARR. The analysis resulted that Salak Phase I geothermal power plant is the most feasible to develop."
2009
T25910
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6   >>