Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Muhammad Athoillah
Abstrak :
Classification is a method for compiling data systematically according to the rules that have been set previously. In recent years classification method has been proven to help many people’s work, such as image classification, medical biology, traffic light, text classification etc. There are many methods to solve classification problem. This variation method makes the researchers find it difficult to determine which method is best for a problem. This framework is aimed to compare the ability of classification methods, such as Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), and Backpropagation, especially in study cases of image retrieval with five category of image dataset. The result shows that K-NN has the best average result in accuracy with 82%. It is also the fastest in average computation time with 17.99 second during retrieve session for all categories class. The Backpropagation, however, is the slowest among three of them. In average it needed 883 second for training session and 41.7 second for retrieve session.
Klasifikasi adalah metode untuk menyusun data secara sistematis menurut aturan-aturan yang telah ditetapkan sebelumnya. Dalam beberapa tahun terakhir metode klasifikasi telah terbukti membantu pekerjaan banyak orang, seperti klasifikasi citra, alat-alat medis, lampu lalu lintas, klasifikasi teks dll. Ada banyak metode yang dapat digunakan untuk memecahkan masalah klasifikasi, metode yang bervariasi ini membuat para peneliti menemukan kesulitan dalam menentukan metode manakah yang terbaik untuk menyelesaikan masalahnya. Artikel ini bertujuan untuk membandingkan kemampuan metode klasifikasi, seperti Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), dan Back-propagation khususnya dalam studi kasus image retrieval (pencarian gambar) dengan lima kategori dataset citra. Hasil penelitian menunjukkan bahwa K-NN memiliki nilai rata-rata akurasi terbaik dengan 82% dan yang tercepat dengan rata-rata waktu komputasi selama 17,99 detik untuk proses pencarian gambar pada semua kategori kelas. Sebaliknya, Backpropagation merupakan metode paling lambat di antara ketiganya. Metode ini rata-rata memerlukan waktu 883 detik untuk sesi pelatihan dan 41,7 detik untuk sesi pencarian gambar.
Surabaya: Institut Teknologi Sepuluh Nopember, Faculty of Mathematics and Science, Muhammad Athoillah, 2015
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Umi Mahdiyah
Abstrak :
A successful understanding on how to make computers learn would open up many new uses of computers and new levels of competence and customization. A detailed understanding on inform-ation- processing algorithms for machine learning might lead to a better understanding of human learning abilities and disabilities. There are many type of machine learning that we know, which includes Backpropagation (BP), Extreme Learning Machine (ELM), and Support Vector Machine (SVM). This research uses five data that have several characteristics. The result of this research is all the three investigated models offer comparable classification accuracies. This research has three type conclusions, the best performance in accuracy is BP, the best performance in stability is SVM and the best performance in CPU time is ELM for bioinformatics data.
Keberhasilan pemahaman tentang bagaimana membuat komputer belajar akan membuka banyak manfaat baru dari komputer. Sebuah pemahaman yang rinci tentang algoritma pengolahan informasi untuk pembelajaran mesin dapat membuat pemahaman yang sebaik kemampuan belajar manusia. Banyak jenis pembelajaran mesin yang kita tahu, beberapa diantaranya adalah Backpropagation (BP), Extreme Learning Machine (ELM), dan Support Vector Machine (SVM). Penelitian ini menggunakan lima data yang memiliki beberapa karakteristik. Hasil penelitian ini, dari ketiga model yang diamati memberikan akurasi klasifikasi yang sebanding. Penelitian ini memiliki tiga kesimpulan, yang terbaik dalam akurasi adalah BP, yang terbaik dalam stabilitas adalah SVM dan CPU time terbaik adalah ELM untuk data bioinformatika.
Surabaya: Institut Teknologi Sepuluh Nopember, Faculty of Mathematics and Science, 2015
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
M. Anwar Ma’sum
Abstrak :
Penyakit jantung merupakan penyakit mematikan nomor satu di Indonesia. Salah satu penyebab utama penyakit jantung yang akut adalah tidak terdeteksinya gejala penyakit sejak awal. Untuk men-cegah bertambahnya korban kematian akibat penyakit jantung dibutuhkan suatu sistem pendeteksian dini dan monitoring penyakit jantung. Oleh sebab itu dalam penelitian ini diajukan suatu sistem pen-deteksian dini dan monitoring penyakit jantung berbasis sinyal ECG. Sistem yang diajukan memiliki tiga komponen utama, yaitu hardware ECG sensor, smartphone, dan server. Sistem yang diajukan da-pat mengenali pola detak jantung, sehingga apabila ada gejala penyakit dapat dikehui sejak dini. Un-tuk membuat sistem pengenalan detak jantung, digunakan algoritma FLVQ-PSO. Hasil eksperimen, menunjukkan bahwa pengenalan pola detak jantung oleh sistem dapat akurasi 91.63%. Selain itu, sistem dapat juga digunakan untuk melakukan verifikasi dari jarak jauh (telehealth) oleh dokter spe-sialis jantung. Hasil eksperimen menunjukkan bahwa tingkat responsivitas server sistem telehealth ini kurang dari 0.6 detik. ......Heart disease is the number one deadly disease in Indonesia. One of the main causes of fatality is the late detection of the disease. To avoid escalation of mortality caused by heart disease, we need early detection and monitoring system of heart disease. Therefore, in this research we propose an early de-tection and monitoring system of heart disease based on ECG signal. The proposed system has three main components: ECG hardware, smartphone, and server. Since the proposed system is designed to classify heartbeat signal, heart disease symptom can be detected as early as possible. We use FLVQ-PSO algorithm to classify heartbeat signal. Experiment result shows that classification accuracy of the system can reach 91.63%. Moreover, the proposed system can be used to verify patients’ heartbeat by cardiologists from distant area (telehealth). Experiment result shows that responsiveness of the system for the telehealth system is less than 0.6 seconds.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2014
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Diane Fitria
Abstrak :
Sistem deteksi aritmia otomatis sangat diperlukan karena keterbatsan dokter spesialis jantung di Indinesia. Paper ini akan mendiskusikan secara lengkap tentang studi dan implementasi dari sistem tersebut. Kami menggunakan berbagai macam metode pengolahan sinyal untuk mengenali aritmia berdasarkan sinyal ekg. Bagian utama dari sistem adalah klasifikasi. Kami menggukanakn jaringan syaraf tiruan berbasis LVQ yang meliputi LVQ1, LVQ2, LVQ2.1, FNLVQ, FNLVQ MSA, FNLVQ-PSO, GLVQ dan FNGLVQ. Hasil eksperimen menunjukkan untuk data non round robin tingkat akurasi sistem mencapai 94.07%, 92.54%, 88.09% , 86.55% , 83.66%, 82.29 %, 82.25%, dan 74.62%d berturut-turut untuk FNGLVQ, FNLVQ-PSO, GLVQ, LVQ2.1, FNLVQ-MSA, LVQ2, FNLVQ dan LVQ1. Sedangkan untuk data round robin tingkat akurasi sistem mencapai 98.12%, 98.04%, 94.31%, 90.43%, 86.75%, 86.12 %, 84.50%, dan 74.78% berturut-turut untuk GLVQ, LVQ2.1, FNGLVQ, FNLVQ-PSO, LVQ2, FNLVQ-MSA, FNLVQ dan LVQ1. ......An automatic Arrythmias detection system is urgently required due to small number of cardiologits in Indonesia. This paper discusses only about the study and implementation of the system. We use several kinds of signal processing methods to recognize arrythmias from ecg signal. The core of the system is classification. Our LVQ based artificial neural network classifiers based on LVQ, which includes LVQ1, LVQ2, LVQ2.1, FNLVQ, FNLVQ MSA, FNLVQ-PSO, GLVQ and FNGLVQ. Experiment result show that for non round robin dataset, the system could reach accuracy of 94.07%, 92.54%, 88.09% , 86.55% , 83.66%, 82.29 %, 82.25%, and 74.62% respectively for FNGLVQ, FNLVQ-PSO, GLVQ, LVQ2.1, FNLVQ-MSA, LVQ2, FNLVQ and LVQ1. Whereas for round robin dataset, system reached accuracy of 98.12%, 98.04%, 94.31%, 90.43%, 86.75%, 86.12 %, 84.50%, and 74.78% respectively for GLVQ, LVQ2.1, FNGLVQ, FNLVQ-PSO, LVQ2, FNLVQ-MSA, FNLVQ and LVQ1.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2014
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library