Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Herwin Suprijono
"Pada penelitian ini, didiskusikan mengenai metode kendali dengan menggunakan algoritma Direct Invers Control. Algoritma DIC yang digunakan berbasiskan pada Neural Networks untuk mendapatkan model identifikasi dan inverse dari plant. Untuk merancang kendali helicopter berbasis Neural Network, maka diperlukan pengumpulan data experiment penerbangan seperti data input kendali ke motor servo berupa sinyal PWM, sinyal output yaitu pitch, roll, yaw dan posisi. Untuk mendapatkan sinyal input dan output tersebut maka pada helicpoter dilengkapi dengan avionic system dan grounds station. Data penerbangan ini dikumpulkan untuk digunakan melatih dan menguji identifikasi dan kendali Neural Network. Dari hasil penelitian telah berhasil mensimulasikan kendali Neural Network DIC untuk attitude dan altitude dari helicopter. Pengembangan kendali Neural Network DIC menjadi kendali helicopter yang berbasis trajectory. Kendali berbasis trajectory ini terdiri dari dua bagian yaitu Outer Loop dan Inner Loop. Dari hasil simulasi, kendali ini dapat mengikuti trajectory dengan baik baik dengan data yang terkondisi maupun dengan data real.

In this study, we discussed the control method using Direct Invers Control algorithm. The DIC algorithm used is based on Neural Networks to obtain the identification and inverse model of the plant. To design a helicopter control based on Neural Network, it is necessary to collect flight experiment data such as control input data to servo motor in the form of PWM signal, output signal including pitch, roll, yaw and position. To get the input and output signals then the helicpoter equipped with avionic system and grounds station. This flight data is collected for use in training and testing the identification and control of Neural Network. From the research results have been successfully simulate the control of Neural Network DIC for the attitude and altitude of the helicopter. The development of Neural Network DIC controls into trajectory based helicopter control. Trajectory based control consists of two parts namely the Outer Loop and Inner Loop. From the simulation results, this control can follow trajectory well with both conditioned data and real data."
Universitas Indonesia, 2017
D2274
UI - Disertasi Membership  Universitas Indonesia Library
cover
Aries Subiantoro
"Sistem tata udara presisi adalah sistem yang mengatur lingkungan udara yang cocok untuk peralatan ICT dalam kebinet ruang Datacenter yang khusus melayani penggunaan yang sangat penting dan kritis. Untuk mencegah kerusakan pada peralatan ICT dan pada media penyimpan akibat thermal shutdown, conductive anodic failures, hygroscopic dust failures, corrosion, dan short circuit, sistem tata udara presisi harus dapat mengendalikan temperatur dan kelembaban didalam kabinet, serta mampu beradaptasi terhadap perubahan temperatur akibat perubahan beban panas peralatan IT.
Permasalahan yang dihadapi adalah bahwa sistem ini memiliki karakterisitik kompleks dan nonlinier yang sangat kuat yang sangat sukar dikendalikan oleh teknik kendali lanjut linier. Di dalam dissertasi ini diusulkan teknik kendali prediktif nonlinier baru yang disebut sebagai sistem kendali prediktif multi model berbasis supervisi untuk mengendalikan temperatur keluaran sistem tata udara presisi. Algoritma kendali tersusun dari tiga layer, yaitu layer optimasi kendali real-time untuk mengikuti perubahan sinyal acuan, layer adaptasi untuk menyesuaikan model PAC terhadap variasi beban panas, dan layer supervisi untuk menjamin kestabilan.
Sistem PAC memiliki rancangan struktur baru yaitu penambahan kondenser sekunder yang berfungsi sebagai reheater untuk menurunkan RH keluaran evaporator. Prinsip kerja dan siklus kompresi uap sistem PAC diilustrasikan dalam psychrometric chart dan diagram enthalpi-tekanan. Model nonlinier sistem PAC diturunkan menggunakan teori pemodelan fisik berdasarkan prinsip konservasi energi dan kesetimbangan massa, dan kemudian dilinierisasi di sekitar titik kerja untuk mengembangkan model ruang keadaan orde-8 yang cocok untuk perancangan pengendali multivariabel. Kualitas model terlinierisasi dianalisa dari aspek respons transien, sifat controllability dan observability, dan interaksi antar variabel masukan-keluaran. Sebuah model nonlinier yang disebut sebagai multi model linier diusulkan dimana matriks parameter model diestimasi oleh algoritma identifikasi N4SID menggunakan himpunan data eksperimen masukankeluaran.
Kontribusi utama dari dissertasi ini adalah multi model linier dapat diestimasi secara bertingkat dimana tiap tingkat identifikasi mempertahankan hubungan linier antar matriks parameter. Konsep model bertingkat ini juga mempermudah perancangan pengendali prediktif multi model dengan tetap mempertahankan optimasi kendali sebagai permasalahan quadratic programming. Mekanisme adaptasi pengendali prediktif dibentuk dengan memperbaharui model prediksi menggunakan algoritma N4SID rekursif.
Untuk menjamin kestabilan sistem PAC dan menghindari fenomena bursting, algoritma deteksi ketidakcukupan eksitasi sinyal masukan dan monitoring sinyal diturunkan dalam persamaan rekursif, sehingga penambahan waktu komputasi tidak signifikan. Komputasi rekursif pada layer supervisi menjadi kontribusi terakhir. Kualitas model nonlinier hasil pemodelan fisik dan identifikasi bertingkat divalidasi melalui simulasi dan uji eksperimen baik secara kualitatif maupun kuantitatif. Sebagai indikator kinerja validasi model digunakan kriteria loss function dan kriteria final prediction error.
Dari hasil uji simulasi dan eksperimen, hanya multi model linier menunjukkan kinerja model yang baik dari aspek kemampuan meniru karakteristik nonlinear sistem PAC dan nilai parameter analisa model yang baik, sehingga model ini cocok dipakai pada perancangan pengendali. Algoritma kendali yang diusulkan juga diverifikasi baik dalam kasus uji simulasi dan eksperimen, dan menunjukkan kemampuannya untuk menjejaki perubahan sinyal acuan.

Precision air conditioning (PAC) is a system that regulate air environment suitable for ICT equipments inside the cabinet of Datacenter room which serves very important and critical works. In order to overcome damage on ICT equipments and media storage due to thermal shutdown, conductive anodic failures, hygroscopic dust failures, corrosion, and short circuit, the PAC should be able to control the temperature and relative humidity inside the cabinet, and also able to adapt againts temperature change caused by interaction with humans, change of environment temperature, and change of heat load of ICT equipments.
The problem encountered is that the PAC shows complex and highly nonlinear dynamics that is usually very difficult to control with linear advanced control systems. In this Dissertation, a new nonlinear predictive control called a supervision-based multi model predictive control to regulate the temperature outlet of PAC is presented. The proposed control algorithm consists of three layers, they are the optimization of real-time control layer for tracking the given set points, the adaptation layer for adjusting the PAC model againts variation of heat load, and the supervision layer for guarantee the closed loop stability.
The work mechanism and vapourcompression cycle for the PAC system are illustrated using psychrometric chart and enthalpypressure diagram. A nonlinear model is derived using physical modeling theory based on the conservation of mass and energy balance principles, and then linearized about operating points for developing a 8th order state space model suited for multivariable control design. The quality of linearized model is analyzed in terms of response transient, controllability, observability, and interaction between input-output variables. A nonlinear model called multi linear model is proposed where the model parameter matrices are estimated by N4SID algorithm using a set of input-output data.
The main contribution of this dissertation is that the multi linear model can be estimated using multi-stage subspace identification algorithm, where the relationship between model parameter matrices is still maintained linear. The concept of multi level models also simplify the design of multi model predictive controller retaining control optimization as a quadratic programming problem. The adaptation mechanism is performed by updating the prediction model using recursive N4SID algorithm.
In order to guarantee system stability and to overcome bursting phenomena, a detection algorithm of less excitation signal and signals monitoring are derived in recursive forms, so that the control algorithm needs no significant additional computing power. The recursive computation in supervision layer is the last contribution for this dissertation. Quality of nonlinear model from physical modeling and system identification is validated through simulation and experimental test both qualitatively and quantitatively. Loss function and final prediction error are choosed as a performance criteria of model validation.
From the simulation and experimental results, only the multi linear model shows good modeling performance in terms of ability to mimic the nonlinear behavior of PAC system and good parameter value of model analysis. The proposed control algorithm is also verified in case of simulation and experimental test showing its ability to track the set-point change.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
D1507
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muhammad Rifan
"BLDC motor telah menjadi motor yang populer karena keunggulanannya. Untuk meningkatkan kinerja BLDC telah banyak Teknik pengendalian yang dikembangkan mulai dari yang konvensional seperti PID sampai dengan yang menggunakan kecerdasan buatan. Namun demikian, sebagian besar peneliti mendesain pengendali untuk BLDC motor dengan memanfaatkan sensor kecepatan. Penelitian ini bertujuan untuk membangun pengendali yang adaptif untuk aplikasi sensorless BLDC motor dengan dua tahapan penelitian yaitu 1 Mengembangkan Adaptif PID Controller untuk BLDC dan 2 Mengembangkan Teknik sensorless BLDC dengan Neural Network Ensemble Kalman Filter. Pada Penelitian ini, telah dikembangkan pengendali Adaptif PID berbasis Model Invers Neural Network dan teknik sensorless BLDC motor menggunakan Neural Network Ensemble Kalman Filter EnKF . Pengendali Adaptif PID berbasis Model Invers Neural Network yang dikembangkan mampu bekerja lebih baik jika dibandingkan dengan pengendali PID, PID Single Neuron, dan Pengendali Single Neuron Fuzzy. Respon waktu sistem menunjukkan rise time meningkat hingga 41,1 , Settling time meningkat hingga 178,9 dan overshoot menurun hingga 825,6 . Sedangkan teknik sensorless Neural Network Ensemble Kalman Filter mampu mengestimasi posisi dan kecepatan motor BLDC hanya dengan mengukur tegangan dan arus setiap phasa baik pada kondisi kerja adanya perubahan referensi kecepatan, adanya perubahan parameter motor BLDC, maupun adanya perubahan beban/gangguan dengan tingkat kesalahan estimasi yang sangat kecil yaitu sebesar 0.7 , serta bekerja baik pada kecepatan rendah dengan jumlah member sebanyak 8.

BLDC motor has become a popular motorcycle because of its advantages. To improve the performance of BLDC has a lot of control techniques developed ranging from conventional ones such as PIDs to those using artificial intelligence. Nevertheless, most researchers design controllers for BLDC motors by utilizing speed sensors. This research aims to build adaptive controller for sensorless BLDC motor applications with two stages of research that is 1 Developing Adaptive PID Controller for BLDC and 2 Developing BLDC Sensorless Technique with Neural Network Ensemble Kalman Filter. In this research, Adaptive PID controller has been developed based on Inverse Neural Network Model and BLDC sensorless motor technique using Neural Network Ensemble Kalman Filter EnKF. The Adaptive PID controller based on the developed Inverse Neural Network model works better than the PID controller, Single Neuron PID, and Single Neuron Fuzzy Controller. The system time response shows rise time rises up to 41.1 , settling time increases up to 178.9 and overshoot decreases to 825.6. While sensural technique Neural Network Ensemble Kalman Filter able to estimate position and speed of BLDC motor only by measuring voltage and current of each phase both at work condition of change of reference of speed, change of motor parameter BLDC, or existence of change of burden / interference with very estimate error rate Small that is equal to 0.7 , and works well at low speed with the number of members as much as 8."
Depok: Universitas Indonesia, 2017
D2516
UI - Disertasi Membership  Universitas Indonesia Library
cover
Jemie Muliadi
"ABSTRAK
Penelitian disertasi ini mencakup analisis Sistem Kendali berbasis Neural Network NN untuk rotorcraft dan Unmanned Aerial Vehicle UAV fixed-wing. Quadrotor dan UAV fixed-wing berekor inverted-V mewakili kedua tipe UAV dengan dinamika terbangnya yang nonlinear, serta kopling-silang yang kuat dan karakteristik under-actuated. Oleh karena itu, metode Direct Inverse Control DIC berbasis NN cocok diterapkan sebagai pengendali terbang kedua tipe UAV tersebut, dengan unjuk kerja yang lebih baik dibandingkan dengan Sistem Kendali saat ini yang berbasis metode Proportional-Integral-Differential PID .UAV berkembang pesat untuk berbagai aplikasi, mulai dari penggunaan quadrotor untuk videografi jarak dekat, hingga UAV fixed-wing berekor inverted-V untuk misi taktis dan strategis. Quadrotor banyak digunakan karena kemampuan hovering serta take-off dan landing secara vertikal untuk misi di area yang sempit dan berlangsung singkat sesuai keterbatasan daya baterainya. Untuk mengatasi keterbatasan tersebut, UAV fixed-wing digunakan untuk area yang luas dan berlangsung lama. BPPT merespon kebutuhan ini dengan mengembangkan Pesawat Udara Nir Awak PUNA Alap-Alap dengan konfigurasi fixed-wing dan ekor inverted-V.Penggunaan ekor inverted-V akan meningkatkan kemampuan maneuver UAV. Meski demikian, ekor inverted-V tersebut memunculkan kopling tambahan antara modus gerak pitch dengan modus roll-yaw sehingga kompleksitas pengendaliannya meningkat dibandingkan dengan ekor T konvensional. Oleh karena itu, diperlukan metode kendali komprehensif yang mengakomodasi aspek nonlinearitas dan kopling-silang akibat hal tersebut. Metode berbasis NN cocok diterapkan untuk UAV karena mekanisme pembelajaran yang dimilikinya untuk mereplika dinamika sistem untuk Identifikasi Sistem dan sebaliknya, mampu membangun inversi dinamika sistem untuk DIC-NN .Di dalam analisis ini, kedua UAV dimodelkan dengan identifikasi berbasis NN untuk mengakomodasi karakter nonlinear dan kopling silangnya. Selanjutnya, DIC-NN dibangun untuk memetakan output UAV terhadap input yang bersesuaian. Unjuk kerja DIC- NN ini dibandingkan terhadap PID sebagai representasi metode kendali yang ada saat ini. Sistem Kendali DIC-NN menghasilkan settling time yang lebih singkat dan overshoot yang lebih kecil dibanding PID.

ABSTRACT
The research in this dissertation focused to analyze the Neural Network NN based control system for rotorcraft and the fixed-wing Unmanned Aerial Vehicle UAV . The Quadrotor and the fixed-wing UAV with incerted-V tail were chosen to represent both of UAV types characterized by the nonlinear flight dynamics, as well as strong cross-coupling and under-actuated condition. Therefore, the NN based Direct Inverse Control DIC method is suitable for a UAV flight controller, with a better performance compared to the existing Proportional-Integral-Differential PID -based Control System.UAVs are growing rapidly for a variety of applications, ranging from Quadrotor for a close-range videography, to the inverted-V tail fixed-wing UAVs in the tactical and strategic missions. Quadrotor is popular due to the ability of hovering and vertically take-off and landing in the narrow areas for short duration due to the limitation of the battery capability. To overcome these limitations, fixed-wing UAVs are used for large areas and long-duration mission. BPPT responds this requirement by developing the Alap-Alap UAV with the fixed-wing configuration and equipping it with inverted-V tail.The application of inverted-V tail aimed to increase UAV maneuverability. However, the inverted-V tail generates an additional coupling between the pitch-motion mode and the roll-yaw mode so that the control complexity increases than the conventional T-tail. Therefore, a comprehensive control method is required to accommodates the nonlinearity and cross-coupling aspects of it. The NN-based method is suitable for UAVs because of the learning mechanism it has to replicate system dynamics for System Identification and vice versa, capable of building system dynamic inversions for DIC-NN .In this analysis, both UAVs are modeled with NN-based identification to accommodate their nonlinear characters and cross-coupling. Furthermore, DIC-NN is built to map the UAV output with the corresponding input. The DIC-NN performance is compared against PID as a representation of the existing control method. The DIC-NN Control System produces a shorter settling time and a smaller overshoot than the PID. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2472
UI - Disertasi Membership  Universitas Indonesia Library