Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Nabila Syahda Nariswari
"Penghantaran rifampisin secara intrapulmonal untuk pengobatan tuberkulosis diharapkan menghasilkan efek terapi yang lebih baik dibanding rute oral. Namun rifampisin memiliki kelarutan rendah dalam medium cairan paru. Pada penelitian sebelumnya, penambahan siklodekstrin terbukti dapat meningkatkan kelarutan dan disolusi rifampisin dari sediaan sebuk inhalasi. Namun, ukuran partikel serbuk inhalasi rifampisin-siklodekstrin tersebut belum memenuhi persyaratan untuk terdiposisi di paru. Penelitian ini bertujuan untuk menghasilkan sediaan serbuk inhalasi rifampisin-siklodekstrin yang memiliki sifat aerodinamis yang baik dengan adanya penambahan l-leusin dan atau amonium bikarbonat, dengan mempertahankan kelarutan dan pelepasan obat yang baik dalam medium cairan prau-paru. Serbuk Inhalasi rifampisin-siklodekstrin 1:1 diformulasikan dengan leusin 30%, amonium bikarbonat 1,5% atau kombinasi keduanya dibuat dengan metode semprot kering. Serbuk yang diperoleh kemudian dikarakterisasi rendemen, kandungan lembab, sifat kristal, gugus fungsional, ukuran partikel geometris dan aerodinamis, serta kelarutan dan profil disolusinya dalam medium simulasi paru. Penelitian ini menunjukkan adanya peningkatan kelarutan dan disolusi dengan adanya penambahan siklodekstrin didukung dengan hasil XRD dan FTIR yang menunjukkan adanya inklusi dan perubahan sifat kristal. Serbuk inhalasi rifampisin-siklodekstrin 1:1 yang dibuat secara semprot kering dengan penambahan leusin 30% dan AB 1,5% (F4) berhasil menghasilkan serbuk inhalasi dengan sifat aerodinamis yang lebih baik dibanding serbuk rifampisin-siklodekstrin, dengan rata-rata diameter aerodinamis 8,6 µm, FPF 30,28%, dan persentase serbuk teranalisis 36,86%. Formula F4 menunjukkan kelarutan 2,40 ± 0,56 mg/mL dalam aquademineralisata dan terdisolusi 56,26 ± 1,63 %, lebih tinggi 1,07 dan 1,68 kali dari rifampisin-siklodekstrin. Berdasarkan hasil tersebut penambahan leusin dan amonium bikarbonat dapat meningkatkan kelarutan, pelepasan obat, rendemen, dan sifat aerodinamis.

Intrapulmonary delivery of rifampicin for the treatment of tuberculosis is expected to produce a better therapeutic effect than the oral route. However, Rifampicin has low solubility in pulmonary fluid medium. In previous studies, the addition of cyclodextrin was proven to increase the solubility and dissolution of rifampicin from inhalation powder preparations. However, the particle size of the rifampicin-cyclodextrin inhaled powder did not meet the requirements for being deposited in the lungs. This study aims to produce a rifampicin-cyclodextrin inhaled powder that has good aerodynamic properties with the addition of l-leucine and/or ammonium bicarbonate, while maintaining good solubility and drug release in the lung fluid medium. Rifampicin-cyclodextrin Inhaled Powder 1:1 is formulated with 30% leucine, 1.5% ammonium bicarbonate or a combination of both prepared by the spray dry method. The powder obtained was then characterized by yield, moisture content, crystalline properties, functional groups, geometric and aerodynamic particle size, as well as solubility and dissolution profile in lung simulation medium. This study showed an increase in solubility and dissolution with the addition of cyclodextrin supported by XRD and FTIR results which showed inclusions and changes in crystal properties. Inhaled rifampicin-cyclodextrin powder 1:1 which was made by spray drying with the addition of 30% leucine and 1.5% AB (F4) succeeded in producing an inhalation powder with better aerodynamic properties than rifampicin-cyclodextrin powder, with an average aerodynamic diameter of 8.65µm, FPF 30.28%, and percentage of analysed powder 36.86%. Formula F4 showed a solubility of 2.40 ± 0.56 mg/mL in aquademineralisata and a dissolution of 56.26 ± 1.63%, 1.07 and 1.68 times higher than rifampicin-cyclodextrin, respectively. Based on these results, the addition of leucine and ammonium bicarbonate can increase the solubility, drug release, yield, and aerodynamic properties.

"
Depok: Fakultas Farmasi Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kwok, Kevin
"Pirfenidon yang dihantarkan secara peroral mengalami metabolisme lintas pertama, sehingga memerlukan dosis tinggi dan berpotensi menyebabkan efek samping sistemik. Oleh karena itu, pengembangan rute alternatif bagi pirfenidon perlu dilakukan. Penelitian sebelumnya melaporkan bahwa sistem penghantaran intrapulmonal berbasis solid lipid nanoparticles (SLN) dapat terdeposit dengan baik pada area alveolus paru-paru. Namun, karakteristik SLN dapat dipengaruhi oleh rasio lipid terhadap obat, jenis dan konsentrasi polimer. Oleh karena itu, optimisasi dengan metode permukaan respon perlu dilakukan untuk memperoleh formula SLN pirfenidon (P-SLN) yang optimal untuk penghantaran intrapulmonal. Lima belas formula disusun berdasarkan desain Box Behnken dengan tiga faktor yaitu, rasio lipid terhadap obat, jenis polimer dan konsentrasi polimer, serta tiga respon, meliputi ukuran partikel, PDI dan efisiensi penjerapan. Formula P-SLN optimal dikarakterisasi meliputi morfologi, kadar lembab, performa aerodinamik, studi disolusi dan stabilitas. Hasil optimisasi menunjukkan bahwa P-SLN optimal tersusun dari rasio lipid terhadap obat 6:1 dan 0,5% Plasdone K-29/32 (FO1). P-SLN FO1 memiliki bentuk sferis dengan ukuran partikel 212,67 nm, PDI 0,39, efisiensi penjerapan 95,02%, dan kadar lembab 1,59%. FO1 memiliki mass median aerodynamic diameter berkisar antara 0,54–12,12 μm. Selain itu, FO1 melepaskan pirfenidon sebanyak 89,61% dan 69,28% dalam medium pH 4,5 dan pH 7,4 selama 45 menit. Sebagai kesimpulan, FO1 terbukti memiliki karakteristik yang sesuai untuk menghantarkan pirfenidon melalui rute intrapulmonal.

Orally administration of pirfenidone undergoes first-pass metabolism, hence requires high dose level and leads to systemic side effects. Therefore, it is necessary to develop an alternative route of administration for pirfenidone. Previous research reported that the solid lipid nanoparticle-based (SLN) intrapulmonary drug delivery system (IPDDS) was deposit well in the alveolar region of the lungs. However, the characteristics of SLN could be influenced by lipid-to-drug ratio, polymer type and concentration. Therefore, optimization using response surface methodology was carried out to obtain the optimized pirfenidon-loaded SLN (P-SLN) formula for IPDDS. Box-Behnken design was applied to create 15 formulas comprising three factors, including lipid-to-drug ratio, type and concentration of polymer and three responses, including particle size, PDI and entrapment efficiency. The optimized P-SLN formula was characterized, including morphology, moisture content, aerodynamic performance, dissolution and stability studies. The optimization results yielded an optimized P-SLN comprised a lipid-to-drug ratio of 6:1 and 0.5% Plasdone K-29/32 (FO1). The P-SLN FO1 had a spherical shape with a particle size of 212.67 nm, PDI of 0.39, entrapment efficiency of 95.02%, and moisture content of 1.59%. FO1 had a mass median aerodynamic diameter ranging from 0.54–12.12 μm. In addition, FO1 release 89.61% and 69.28% pirfenidone for 45 minutes in buffer medium pH 4.5 and pH 7.4. In conclusion, FO1 was proven to have an appropriate IPDDS characteristics for delivering pirfenidone."
Depok: Fakultas Farmasi Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Frederick
"Penelitian mengenai koloid nanopartikel perak telah banyak dilakukan karakterisasinya. Koloid nanopartikel perak tersebut diharapkan dapat dijadikan sediaan inhalasi serbuk kering untuk terapi inhalasi. Penelitian ini dilakukan untuk membuat sediaan berupa nanopartikel perak (AgNP), nanopartikel perak dengan PVA (AgNP-PVA), dan. nanopartikel perak dengan PAMAM G4 (AgNP-PAMAM G4). Sediaan – sediaan tersebut dikarakterisasi untuk melihat bahwa sediaan tersebut dapat digunakan untuk terapi inhalasi. Larutan koloid nanopartikel perak dibuat dengan metode reduksi kimia, yaitu dengan mereduksi AgNO3 dengan NaBH4. AgNP memiliki ukuran partikel hidrodinamis, geometris, dan aerodinamis dengan ukuran masing – masing 14 nm, 10,547 nm, dan 485,4 nm. Ukuran partikel hidrodinamis, geometris, dan aerodinamis diperoleh masing - masing dengan pengujian Particle Size Analyzer (PSA), Transmission Electron Microscope (TEM), dan Andersen Cascade Impactor (ACI). Konsentrasi AgNP, AgNP-PVA, dan AgNP-PAMAM G4 diuji dengan Atomic Absorption Spectrophotometry (AAS) sebesar 42,36 ppm, 23,29 ppm, dan 13,80 ppm. Elemen perak (Ag) terkandung dalam seluruh jenis sampel AgNP dan pengujian dilakukan dengan alat Energy Dispersive X-Ray (EDX). Berdasarkan karakterisasi keseluruhan, dapat dikatakan bahwa AgNP-PAMAM G4 menunjukkan hasil yang baik dibandingkan hasil sampel lainnya.

The research about silver nanoparticles colloids has been carried out and has been charazterized. Silver nanoparticles colloids are expected to be used as dry powder inhaler for inhalation therapy. This research is carried out to make silver nanoparticles (AgNP), silver nanoparticles with PVA (AgNP-PVA), and silver nanoparticles with PAMAM G4 (AgNP-PAMAM G4). Samples will be characterized to see whether sample can be used for inhalation therapy. Silver nanoparticles colloids are made by chemical reduction method. That method is carried out by reducing AgNO3 with NaBH4. AgNP has hydrodynamic, geometric, and aerodynamic particle size in the amount of 14 nm, 10,547 nm, and 485,4 nm each. Hydrodynamic, geometric, aerodynamic particle size are obtained by particle size analyzer (PSA), Transmission Electron Microscope (TEM), and Andersen Cascade Impactor (ACI) each. AgNP, AgNP-PVA, AgNP-PAMAM G4 concentration are obtained by Atomic Absorption Spectrophotometry (AAS) in the amount of 42,36 ppm, 23,29 ppm, and 13,80 ppm each. Silver (Ag) element is contained in all types of silver nanoparticles sample and Energy Dispersive X-ray (EDX) is used it. Based on overall characteristics, AgNP-PAMAM G4 has shown better results than other samples."
Depok: Fakultas Farmasi Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faishal Andzar
"Penyakit Tuberkulosis merupakan salah satu penyakit yang menjadi salah satu permasalahan di negara berkembang, salah satunya di Indonesia. Terapi tuberkulosis yang biasanya dominan dalam administrasi oral memiliki berbagai permasalahan, yaitu salah satunya adalah rendahnya konsentrasi obat pada tempat infeksi Mycobacterium tuberculosis, yaitu di alveolus.Penghantaran obat antituberculosis langsung ke paru-paru merupakan salah satu strategi untuk meningkatkan konsentrasi obat di lokasi infeksi sehingga efektivitas terapi meningkat. Isoniazid merupakan salah satu lini terapi pertama terapi tuberkulosis. Namun, serbuk isoniazid perlu memiliki sifat arodinamis yang baik agar dapat terdeposisi di paru-paru. Penelitian ini bertujuan untuk mengkaji pengaruh eksipien L-leusin dan/atau amonium bikarbonat terhadap sifat aerodinamis dan profil pelepasan obat serbuk inhalasi isoniazid. Semua formula serbuk inhalasi isoniazid dibuat dengan metode semprot kering. Serbuk inhalasi yang diperoleh kemudian dikarakterisasi morfologi, kandungan lembab, densitas bulk, distribusi ukuran partikel, sifat aerodinamis, gugus fungsi, kadar, serta profil pelepasan dalam medium simulasi paru-paru. Hasil penelitian menunjukkan bahwa penambahan L-leusin meningkatkan sifat aerodinamis, sementara penambahan amonium bikarbonat tidak meningkatkan sifat aerodinamis secara signifikan. Formula serbuk inhalasi isoniazid dengan kombinasi eksipien L-leusin dan amonium bikarbonat memiliki sifat aerodinamis paling baik dengan nilai persentase emitted fraction (EF) 62,08%±1,80 dan fine particle fraction (FPF) 50,39%±6,13 dan diameter aerodinamis (MMAD) 5,68±0,35 µm. Uji pelepasan obat secara in-vitro menunjukkan bahwa semua formula dapat terdisolusi hingga 100% dalam waktu 45 menit. Namun, penambahan amonium bikarbonat tidak mampu mengubah morfologi serbuk inhalasi isoniazid menjadi berpori seperti yang diharapkan. Oleh karena itu, optimasi parameter proses penyemprotan diperlukan untuk menghasilkan partikel dengan pori.

Tuberculosis is a major health problem in many developing countries, including Indonesia. The therapy for tuberculosis primarily consists of orally consumed drugs, which can result in several issues, including low concentration of antibiotics at the alveoli, the primary site of infection of Mycobacterium tuberculosis. Pulmonary delivery of anti-tuberculosis drugs is one of strategies to provide adequate concentrations at the site of infection, thus increase effectiveness of therapy. Isoniazid is one of the first-line drugs for tuberculosis therapy. However, isoniazid powder should exhibit good aerodynamic properties to be deposited in the lungs. Thus, this study aimed to examine the effect of L-leucine and/or ammonium bicarbonate on aerodynamic properties and drug release profile of isoniazid inhalation powder. All formulations were produced by spray drying, with or without L-leucine and/or ammonium bicarbonate. The obtained powder was characterized by its morphology, moisture content, bulk density, particle size distribution, aerodynamic properties, functional group, content assay, and drug release profile in simulated lung medium. The results showed that the addition of L-leucine increased the aerodynamic properties of isoniazid, while the addition of ammonium bicarbonate did not increase the aerodynamic properties significantly. Isoniazid inhalation powder with combination of 5% w/w L-leucine and 5% w/w ammonium bicarbonate exhibited the best aerodynamic properties with emitted fraction (EF) 62.08%±1.80% and fine particle fraction (FPF) 50.39%±6.13%, and aerodynamic diameter (MMAD) 5.68±0.35 µm. In-vitro drug release test showed that isoniazid in all formulations can be dissolved up to 100% within 45 minutes. However, the addition of ammonium bicarbonate could not form large porous particles as expected. Therefore, further research is required to optimize spray drying parameters in order to achieve the desired particles."
Depok: Fakultas Farmasi Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fionna Christie Emmanuela
"Rifampisin memiliki ke1arutan yang rendah dalam medium cairan paru-paru, sehingga efikasi" "obat tidak optimal. Pada penelitian sebe1utnnya, penambahan eksipien peningkat ke1arutan seperti manitol terbukti dapat meningkatkan kelarutan dan disolusi rifampisin dari sediaan serbuk inhalasi. Namun, ukuran partikel serbuk inhalasi rifampisin-manitol tersebut belum memenuhi persyaratan untuk terdeposisi di paru-paru. Penelitian ini bertujuan untuk menghasilkan sediaan serbuk inhalasi rifampisin-manitol yang memiliki sifat aerdonamis yang baik dengan adanya penambahan 30% 1-leusin, 1,5% amonium bikarbonat, atau kombinasi keduanya, dengan tetap mempertahankan kelarutan dan pe1epasan obat yang baik da1am medium cairan paru-paru. Formulasi serbuk inhalasi rifampisin-manitol dibuat dengan metode semprot kering, kemudian dikarakterisasi rendemen, kandungan lembab, ukuran partikel geometris dan aerodinamis, serta ke1arutan dan profil disolusinya da1am medium simulasi paru­ paru. Penelitian ini menunjukkan bahwa penambahan kombinasi 30% l-1eusin dan 1,5% amonium bikarbonat pada serbuk inhalasi rifampisin-manito1 (F4) menghasilkan serbuk inhalasi dengan sifat aerodinamis yang paling baik, dengan kelarutan dan disolusi yang dapat dipertahankan dengan baik. Pengukuran menggunakan Anderson Cascade Impactor (ACI) menunjukkan diameter aerodinamis padarentang 0,57 ± 1,2Jlm hingga 11,59 ± 1,29Jlm dengan rata-rata diameter sebesar 7,76J1m, persentase serbuk teranalisis (Emitted Fraction I EF) sebesar 34,96%, dan % Fine Particle Fraction (FPF) sebesar 41,22°/o. Pengujian kelarutan memberikan hasi1 sebesar 1,51 ± 0,02 mg/mL dan persentase obat terdisolusi sebesar 20,22%" "± 1,78% yang menunjukkan penurunan berturut-turut sebanyak 0,82 dan 0,66 kali lipat" "dibandingkan formulasi rifampisin-manitol. Berdasarkan hal tersebut, maka dapat disimpu1kan bahwa formu1asi rifampisin-manitol dengan kombinasi 30% 1-leusin dan 1,5% amonium.

Poor solubility of rifampicin in the lung fluid could fail to exert an optimal therapeutic effect." "In the previous study, the addition of mannitol can be used to enhance the solubility and dissolution rate of rifampicin dry powder inhaler. However, the particle size of the previous rifampicin-mannitol dry powder does not meet the criteria to be deposited in the deep lung yet. This study aimed to produce rifampicin-mannitol dry powder inhaler with good aerodynamic properties by adding 30% of 1-leucine, 1,5% of ammonium bicarbonate, or both while maintaining a good solubility and dissolution rate of the drug in simulated lung fluid. All formulations were produced by spray drying, then characterized by their yield, moisture content, geometric and aerodynamic particle size distribution, as well as solubility and dissolution rate in simulated lung fluid. This study indicated that rifampicin-mannitol formulation with 30% addition of 1-leucine and 1,5% of ammonium bicarbonate (F4) showed the best aerodynamic properties, with good solubility and dissolution rate. Measurement using Anderson Cascade Impactor (ACI) showed aerodynamic diameter at the range from 0.57 ±" "1.26J..Lm to 11.59 ± 1.29p.m, with mean diameter of 7.76p.m, 34.96% Emitted Fraction (EF), and % Fine Particle Fraction (FPF) of 41.22%. Compared to rifampicin-mannitol formulation, the solubility and dissolution rate of F4 are decreased by 0,82 and 0,66 times to 1,51 ± 0,02 mg/mL and 20.22% ± 1.78% respectively. As a conclusion, rifampicin-mannitol dry powder inhaler with 30% addition of 1-leucine and 1.5% of ammonium bicarbonate perform the best aerodynamic properties."
Depok: Fakultas Farmasi Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Thalia Yulian Chandra
"Formulasi serbuk inhalasi rifampisin dengan pembawa kitosan dapat menghantarkan lebih banyak rifampisin ke makrofag paru untuk meningkatkan efektivitas terapi tuberkulosis laten. Diperlukan serbuk rifampisin-kitosan dengan sifat aerodinamis yang baik agar dapat terdeposisi di paru-paru. Penelitian ini bertujuan untuk menghasilkan sediaan serbuk inhalasi rifampisin-kitosan dengan adanya penambahan L-leusin dan/atau amonium bikarbonat yang memiliki sifat aerodinamis yang baik dan pelepasan obat yang baik dalam medium makrofag paru. Serbuk inhalasi rifampisin-kitosan 1:1 (F1) diformulasikan dengan leusin 30% (F2), amonium bikarbonat 1,5% (F3), atau kombinasinya (F4) dan dibuat dengan metode semprot kering. Serbuk inhalasi rifampisin-kitosan yang diperoleh kemudian dikarakterisasi rendemen, kandungan lembab, ukuran partikel geometris dan aerodinamis, serta kelarutan dan profil disolusinya dalam medium simulasi paru pH 7,4 dan medium simulasi makrofag paru pH 4,5. Penambahan leusin 30% (F2) berhasil sedikit memperbaiki sifat aerodinamis serbuk rifampisin-kitosan 1:1 (F1) dengan diameter aerodinamis rata-rata sebesar 7,56 µm, fine particle fraction (FPF) sebesar 32,48%, dan persentase serbuk teranalisis sebesar 67,23%, serta meningkatkan pelepasan rifampisin dalam medium simulasi makrofag alveolar (pH 4,5) menjadi 16,07 ± 0.56% dalam 2 jam dengan peningkatan 1,33 kali dibandingkan dengan serbuk rifampisin-kitosan (F1).

Formulation of rifampicin inhalation powder with chitosan as a carrier could deliver more rifampicin to alveolar macrophages to to increase the effectiveness of latent tuberculosis therapy. Rifampicin-chitosan powder with good aerodynamic properties is required in order to be deposited in the lungs. This study was aimed to produce rifampicin-chitosan inhalation powder with the addition of L-leucine and/or ammonium bicarbonate with good aerodynamic properties and high drug release in simulated alveolar macrophage fluid. Rifampicin-chitosan (1:1) inhalation powder (F1) was formulated with 30% L-leucine (F2), 1.5% ammonium bicarbonate (F3), or both (F4) and prepared using spray drying method. The obtained rifampicin-chitosan inhalation powder was characterized by its powder yield, moisture content, geometric and aerodynamic particle size distribution, as well as solubility and dissolution profile in simulated lung fluid and simulated alveolar macrophage fluid. The addition of 30% L-leucine suceeded in slightly the aerodynamic properties of 1:1 rifampicin-chitosan powder (F1) with an average aerodynamic diameter of 7.56 µm, fine particle fraction (FPF) of 32.48%, and emitted fraction of 67.23%. It also showed to increase rifampicin dissolution in simulated alveolar macrophage fluid (pH 4.5) to 16.07 ± 0.56% within 2 hours with an increase of 1.33 times compared to rifampicin-chitosan powder (F1)."
Depok: Fakultas Farmasi Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library