Ditemukan 5 dokumen yang sesuai dengan query
Alfia Choirun Nisa
"Keberhasilan pembangunan suatu negara dapat dilihat dari kondisi kesejahteraan rakyatnya. Peningkatan kesejahteraan rakyat menjadi sasaran utama dalam kegiatan pembangunan yang dilaksanakan oleh pemerintah. Agar pembangunan yang dilakukan efektif dan tepat sasaran, perlu dilakukan pengelompokan untuk mengetahui karakteristik wilayah. Penelitian ini membahas mengenai pengelompokan kabupaten/kota di Pulau Jawa berdasarkan indikator kesejahteraan rakyat tahun 2022. Kesejahteraan yang diukur merupakan kesejahteraan materi. Variabel yang digunakan dalam penelitian ini adalah persentase penduduk miskin, PDRB per kapita atas dasar harga berlaku, rata-rata lama sekolah, harapan lama sekolah, persentase pengeluaran per kapita untuk makanan, tingkat pengangguran terbuka, jumlah penduduk, kepadatan penduduk, dan angka harapan hidup. Terdapat dua pendekatan yang digunakan dalam mengelompokkan kabupaten/kota beserta variabel-variabelnya. Pendekatan pertama adalah mengelompokkan kabupaten/kota dan variabel-variabelnya secara simultan dengan menggunakan metode biclustering plaid model. Pendekatan kedua adalah mengelompokkan kabupaten/kota menggunakan clustering metode Ward dan dilanjutkan dengan metode biplot. Tujuan penelitian ini adalah membandingkan hasil kedua pendekatan tersebut, yaitu hasil biclustering dan hasil cluster-biplot pada data 119 kabupaten/kota di Pulau Jawa pada tahun 2022 berdasarkan indikator kesejahteraan rakyat. Berdasarkan hasil penelitian, didapatkan jumlah kelompok dari kedua pendekatan tersebut adalah sebanyak 2 dengan kelompok 1 merupakan wilayah yang lebih sejahtera daripada kelompok 2. Ditinjau dari nilai standar deviasinya, kelompok hasil biclustering plaid model memiliki nilai standar deviasi yang lebih kecil dibanding kelompok hasil cluster-biplot. Dengan demikian, secara umum pendekatan pertama menghasilkan kelompok yang lebih baik karena lebih homogen dibandingkan dengan pendekatan kedua.
The success of a country's development can be known from the well-being of its people. Improving the welfare of the population is the main goal in the development activities carried out by government. To ensure that development is effective and targeted, grouping is needed to understand the characteristics of the region. This study discusses the grouping of regencies/cities in Java based on the people's welfare indicators in 2022. The measured welfare is material well-being. Variables used in this study are the percentage of the poor population, GDP per capita at current prices, average length of schooling, expected length of schooling, percentage of per capita expenditure on food, open unemployment rate, population, population density, and life expectancy. There are two approaches used in grouping regencies/cities along with their variables. The first approach is to group regencies/cities and their variables simultaneously using plaid model biclustering method. The second approach is to group regencies/cities using the Ward clustering method and then followed by the biplot method. The aim of this study is to compare the results of these two approaches, namely the biclustering results and the cluster-biplot results on data from 119 regencies/cities in Java in 2022 based on people's welfare indicators. Based on the results of this study, the number of groups from each approach is 2, with group 1 being more prosperous than group 2. Judging from the standard deviation values, the plaid model biclustering result groups have lower standard deviation values compared to the cluster-biplot result groups. Therefore, in general the first approach produces better groups as they are more homogeneous compared to the second approach."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Felicia
"Sekolah adalah lembaga pendidikan formal yang bertujuan untuk memberikan pengajaran dan pembelajaran kepada siswa dalam berbagai bidang studi. Sekolah terdiri dari berbagai jenjang pendidikan, taman kanak-kanak hingga sekolah menengah atas. Kualitas performa suatu sekolah dapat diukur dengan melihat capaian Ujian Nasionalnya. Ujian Nasional tingkat SMA wajib diikuti oleh seluruh siswa kelas 12 dan dilaksanakan untuk menetapkan standar nasional yang akan digunakan untuk mengendalikan mutu pendidikan secara nasional. Analisis performa sekolah pada umumnya menggunakan metode konvensional sistem peringkat atau ranking berdasarkan nilai rata-rata Ujian Nasional. Analisis data nilai Ujian Nasional juga dapat dilakukan dengan berbagai cara termasuk pengelompokan data menggunakan algoritma clustering maupun biclustering. Metode clustering dapat digunakan untuk mengidentifikasi nilai sekolah yang mirip satu sama lain. Salah satu metode clustering yang populer digunakan adalah metode hierarki dan metode partisi (metode K-Means). Tetapi pada kenyataannya, masing-masing mata pelajaran memiliki penilaian yang sangat berbeda dari mata pelajaran lainnya. Penerapan biclustering pada metode pengelompokan ini diperlukan untuk mengungkap pola hubungan yang tidak terlihat antara nilai dan mata pelajaran pada data. Hal ini diimplementasikan dalam pengelompokan secara bersamaan dan simultan antara SMA (baris) dan mata pelajaran (kolom). Penelitian ini bertujuan untuk mengelompokkan SMA/MA di DKI Jakarta dan indikator nilai Ujian Nasional tahun 2019 menggunakan metode biclustering Cheng and Church dan Plaid Model serta membandingkan hasil penerapan metode tersebut menggunakan nilai indeks Jaccard dan variansi koherensi. Penelitian ini menggunakan data Capaian Nilai Ujian Nasional tahun 2019 pada SMA/MA di DKI Jakarta yang bersumber dari Kementerian Pendidikan dan Kebudayaan. Hasil penerapan metode biclustering Cheng and Church dan biclustering Plaid Model, menunjukkan bahwa bicluster-bicluster yang dihasilkan metode biclustering Plaid Model memiliki kisaran nilai indeks Jaccard dan variansi koherensi yang lebih rendah dibandingkan biclustering Cheng and Church. Hasil penelitian tersebut menunjukkan bahwa metode biclustering Plaid Model memberikan performa pengelompokan terbaik pada data Ujian Nasional. Diharapkan hasil penelitian ini dapat membantu memberikan wawasan terkait metode yang sesuai untuk diterapkan pada data dengan kondisi yang serupa.
A school is a formal educational institution aimed at providing teaching and learning to students in various fields of study. Schools consist of various levels of education, from kindergarten to high school. The quality of a school's performance can be measured by looking at its National Exam achievements. The National Exam at the high school level must be taken by all 12th-grade students and is conducted to establish national standards that will be used to control the quality of education on a national scale. School performance analysis generally uses conventional ranking systems based on the average National Exam scores. National Exam score data analysis can also be performed in various ways, including data clustering using clustering or biclustering algorithms. Clustering methods can be used to identify schools with similar scores. One of the popular clustering methods used is hierarchical clustering and partitioning methods (K-Means method). However, in reality, each subject has distinctly different assessments from other subjects. The application of biclustering in this clustering method is necessary to reveal hidden patterns of relationships between scores and subjects in the data. This is implemented in simultaneous grouping of both high schools (rows) and subjects (columns). This study aimsto cluster high schools (SMA/MA) in Jakarta and the 2019 National Exam score indicators using the Cheng and Church biclustering method and the Plaid Model biclustering method, and to compare the results of these methods using Jaccard index values and coherence variance. This study uses the 2019 National Exam Score Achievement data for high schools (SMA/MA) in Jakarta sourced from the Ministry of Education and Culture. The results of the application of the Cheng and Church biclustering method and the Plaid Model biclustering method show that the biclusters produced by the Plaid Model biclustering method have a lower range of Jaccard index values and coherence variance compared to Cheng and Church biclustering. The results of this study indicate that the Plaid Model biclustering method provides the best clustering performance for National Exam data. The findings of this study are expected to offer insights into the appropriate methods for application to similar data conditions."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Irba Alifa Taqiyya
"Angka kematian bayi (AKB) didefinisikan sebagai jumlah kematian bayi di bawah usia satu tahun per 1000 kelahiran hidup pada satu tahun tertentu. Angka kematian bayi merupakan salah satu indikator penting yang dapat mencerminkan derajat kesehatan suatu masyarakat. Target angka kematian bayi pada Sustainable Development Goals (SDGs) yang berlaku sejak tahun 2015 sampai tahun 2030 adalah 12 kematian per 1000 kelahiran hidup. Berdasarkan hasil long form sensus penduduk BPS, AKB di Indonesia tahun 2022 adalah 17 kematian per 1000 kelahiran hidup, angka tersebut masih tergolong tinggi apabila dibandingkan dengan beberapa negara di ASEAN. Angka kematian bayi dipengaruhi oleh beberapa variabel. Analisis mengenai variabel-variabel yang memengaruhi AKB dapat dilakukan dengan analisis regresi linier klasik. Namun, nilai pengamatan seperti AKB dan variabel-variabel yang memengaruhinya memuat informasi lokasi (spasial), sehingga seringkali terjadi ketergantungan spasial antar pengamatan yang mengakibatkan asumsi saling bebas pada model regresi linier tidak terpenuhi. Oleh karena itu, pemodelan dapat dilakukan dengan menggunakan model regresi spasial yang memperhatikan keterkaitan antar lokasi. Tujuan dari penelitian ini adalah menganalisis ketergantungan spasial pada data AKB di Pulau Jawa dan memodelkan AKB di Pulau Jawa tahun 2022 menggunakan General Nesting Spatial Model (GNSM) untuk menganalisis variabel-variabel yang memengaruhinya. Hasil uji autokorelasi spasial menggunakan uji Moran’s I menyimpulkan bahwa terdapat autokorelasi spasial pada variabel terikat (AKB), variabel bebas, dan pada residual model regresi linier. Berdasarkan nilai AIC dan, diperoleh kesimpulan General Nesting Spatial Model (GNSM) lebih baik dalam memodelkan Angka Kematian Bayi (AKB) di Pulau Jawa tahun 2022 dibandingkan Spatial Durbin Model (SDM) dan General Spatial Model(GSM).
Infant mortality rate (IMR) is defined as the number of deaths of infants under one year of age per 1000 live births in a given year. Infant mortality rate is one of the important indicators that can reflect the health level of a community. The infant mortality target in the Sustainable Development Goals (SDGs) that apply since 2015 to 2030 is 12 deaths per 1000 live births. Based on the results of the BPS long form population census, the IMR in Indonesia in 2022 is 17 deaths per 1000 live births, which is still relatively high compared to several countries in ASEAN. Infant mortality rates are influenced by several variables. Analysis of the variables that influence IMR can be done with classical linear regression analysis. However, observation values such as IMR and the variables that affect it contain location (spatial) information, so there is often spatial dependence between observations which results in the assumption of mutual independence in linear regression models not being met. Therefore, modeling can be done using spatial regression model that considers the interrelationships between locations. The purpose of this study is to analyze the spatial dependence of IMR data in Java Island and model IMR in Java Island in 2022 using the General Nesting Spatial Model (GNSM) to analyze the variables that affect it. The results of the spatial autocorrelation test using Moran's I test concluded that there is spatial autocorrelation in the dependent variable (IMR), independent variables, and in the residuals of the linear regression model. Based on the AIC and
values, it is concluded that General Nesting Spatial Model (GNSM) is better in modeling the Infant Mortality Rate (IMR) in Java Island in 2022 than Spatial Durbin Model (SDM) and General Spatial Model (GSM)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Joan Bidadari Annandale
"Penyakit Alzheimer adalah penyakit progresif yang dimulai dengan hilangnya ingatan ringan dan berkembang hingga hilangnya kemampuan bicara dan respon terhadap lingkungan. Penyakit ini belum dapat disembuhkan, dan pengobatan saat ini hanya berfungsi mengurangi gejala sementara. Oleh karena itu, penting untuk mengidentifikasi risiko utama pengembangan Alzheimer dan memberikan diagnosis yang tepat guna mendukung penelitian lebih lanjut. Model regresi Cox-Proportional Hazard sering digunakan untuk menangani data survival tersensor, tetapi saat ini, machine learning menunjukkan potensi besar. Dua model machine learning, Random Survival Forest dan Gradient Boosting Survival Analysis, mampu menangani data survival dan data tersensor tanpa memerlukan asumsi parameter. Kedua model ini juga menghindari overfitting dan lebih mudah diinterpretasi dibandingkan model non-parametrik lainnya. Hasil pada data Alzheimer menunjukkan bahwa Gradient Boosting Survival Analysis memiliki performa terbaik dengan nilai C-index 0.8503, diikuti oleh Random Survival Forest dengan nilai 0.8286. Model regresi Cox-PH memiliki kinerja terendah dengan nilai C-index 0.8092, dan data Alzheimer yang digunakan tidak memenuhi asumsi proportional hazard. Model Gradient Boosting Survival Analysis dan Random Survival Forest mengidentifikasi CDRSB dan FDG sebagai risiko terpenting, sedangkan model Cox-PH mengidentifikasi AV45 dan FDG.
Alzheimer's disease is a progressive disease that begins with mild memory loss and progresses to loss of speech and response to the environment. There is no cure for the disease, and current treatments only temporarily reduce symptoms. Therefore, it is important to identify the main risk factors for developing Alzheimer's and provide an accurate diagnosis to support further research. The Cox-Proportional Hazard regression model is often used to handle censored survival data, but currently, machine learning shows potential. Two machine learning models, Random Survival Forest and Gradient Boosting Survival Analysis, are able to handle survival data and censored data without requiring parameter assumptions. Both models also avoid overfitting and are easier to interpret than other non-parametric models. The results on Alzheimer's data show that Gradient Boosting Survival Analysis has the best performance with a C-index value of 0.8503, followed by Random Survival Forest with a value of 0.8286. The Cox-PH regression model has the lowest performance with a C-index value of 0.8092, and the data used does not meet the proportional hazard assumption. The Gradient Boosting Survival Analysis and Random Survival Forest models identified CDRSB and FDG as the most important risks, while the Cox-PH model identified AV45 and FDG."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Nadhila Nur Qamarina
"Light Rail Transit (LRT) Jabodebek merupakan sebuah layanan transportasi umum yang baru diresmikan pada Agustus 2023 dan melayani rute Jakarta, Bogor, Depok, dan Bekasi. Dengan meningkatnya masyarakat yang melakukan mobilitas, kehadiran LRT Jabodebek merupakan bagian dari upaya strategis pemerintah untuk mengatasi masalah kemacetan di wilayah Jabodetabek dan mengurangi ketergantungan masyarakat terhadap kendaraan pribadi. Sejak beroperasi, LRT Jabodebek mendapat respons positif dari masyarakat. Akan tetapi, ada pula kritik yang menunjukkan beberapa kekurangan dalam layanan dan fasilitas. Penelitian ini dirancang untuk mengidentifikasi dan menganalisis faktor-faktor yang dapat memengaruhi tingkat kepuasan pengguna LRT Jabodebek. Variabel yang diduga memiliki pengaruh terhadap kepuasan pengguna LRT Jabodebek adalah kenyamanan, keandalan, keselamatan dan keamanan, aksesibilitas, kesetaraan, dan harga/tarif. Penelitian ini menggunakan pendekatan kuantitatif dengan mengumpulkan data melalui kuesioner selama 1 bulan. Responden dipilih melalui teknik purposive sampling dengan kriteria pengguna LRT Jabodebek yang menggunakan LRT Jabodebek untuk tujuan pekerjaan atau pendidikan dan berusia lebih dari 18 tahun. Jumlah responden yang didapat pada penelitian ini adalah sebanyak 405 orang. Data dalam penelitian ini dianalisis menggunakan metode Partial Least Square-Structural Equation Modeling (PLS-SEM). Hasil penelitian ini menunjukkan bahwa aspek keselamatan dan keamanan, aksesibilitas, dan harga/tarif memiliki pengaruh yang signifikan terhadap kepuasan pengguna LRT Jabodebek.
Light Rail Transit (LRT) Jabodebek is a public transportation service inaugurated in August 2023, serving routes across Jakarta, Bogor, Depok, and Bekasi. With increasing population mobility, the introduction of LRT Jabodebek represents a strategic government initiative to address traffic congestion in the Jabodetabek area and reduce dependence on private vehicles. Since its launch, LRT Jabodebek has received positive feedback from the public. However, there have also been criticisms highlighting certain shortcomings in its services and facilities. This study aims to identify and analyze factors influencing customer satisfaction with LRT Jabodebek. The variables examined include comfort, reliability, safety and security, accessibility, equity, and pricing. A quantitative approach was employed, collecting data via questionnaires over a month. Respondents were selected using purposive sampling, targeting LRT Jabodebek users commuting for work or education and aged 18 years or older. This study gathered responses from 405 participants. Data analysis was conducted using the Partial Least Square Structural Equation Modeling (PLS-SEM) method. This study shows that safety and security, accessibility, and pricing have a significant impact towards customer satisfaction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership Universitas Indonesia Library