Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Alfia Choirun Nisa
"Keberhasilan pembangunan suatu negara dapat dilihat dari kondisi kesejahteraan rakyatnya. Peningkatan kesejahteraan rakyat menjadi sasaran utama dalam kegiatan pembangunan yang dilaksanakan oleh pemerintah. Agar pembangunan yang dilakukan efektif dan tepat sasaran, perlu dilakukan pengelompokan untuk mengetahui karakteristik wilayah. Penelitian ini membahas mengenai pengelompokan kabupaten/kota di Pulau Jawa berdasarkan indikator kesejahteraan rakyat tahun 2022. Kesejahteraan yang diukur merupakan kesejahteraan materi. Variabel yang digunakan dalam penelitian ini adalah persentase penduduk miskin, PDRB per kapita atas dasar harga berlaku, rata-rata lama sekolah, harapan lama sekolah, persentase pengeluaran per kapita untuk makanan, tingkat pengangguran terbuka, jumlah penduduk, kepadatan penduduk, dan angka harapan hidup. Terdapat dua pendekatan yang digunakan dalam mengelompokkan kabupaten/kota beserta variabel-variabelnya. Pendekatan pertama adalah mengelompokkan kabupaten/kota dan variabel-variabelnya secara simultan dengan menggunakan metode biclustering plaid model. Pendekatan kedua adalah mengelompokkan kabupaten/kota menggunakan clustering metode Ward dan dilanjutkan dengan metode biplot. Tujuan penelitian ini adalah membandingkan hasil kedua pendekatan tersebut, yaitu hasil biclustering dan hasil cluster-biplot pada data 119 kabupaten/kota di Pulau Jawa pada tahun 2022 berdasarkan indikator kesejahteraan rakyat. Berdasarkan hasil penelitian, didapatkan jumlah kelompok dari kedua pendekatan tersebut adalah sebanyak 2 dengan kelompok 1 merupakan wilayah yang lebih sejahtera daripada kelompok 2. Ditinjau dari nilai standar deviasinya, kelompok hasil biclustering plaid model memiliki nilai standar deviasi yang lebih kecil dibanding kelompok hasil cluster-biplot. Dengan demikian, secara umum pendekatan pertama menghasilkan kelompok yang lebih baik karena lebih homogen dibandingkan dengan pendekatan kedua.

The success of a country's development can be known from the well-being of its people. Improving the welfare of the population is the main goal in the development activities carried out by government. To ensure that development is effective and targeted, grouping is needed to understand the characteristics of the region. This study discusses the grouping of regencies/cities in Java based on the people's welfare indicators in 2022. The measured welfare is material well-being. Variables used in this study are the percentage of the poor population, GDP per capita at current prices, average length of schooling, expected length of schooling, percentage of per capita expenditure on food, open unemployment rate, population, population density, and life expectancy. There are two approaches used in grouping regencies/cities along with their variables. The first approach is to group regencies/cities and their variables simultaneously using plaid model biclustering method. The second approach is to group regencies/cities using the Ward clustering method and then followed by the biplot method. The aim of this study is to compare the results of these two approaches, namely the biclustering results and the cluster-biplot results on data from 119 regencies/cities in Java in 2022 based on people's welfare indicators. Based on the results of this study, the number of groups from each approach is 2, with group 1 being more prosperous than group 2. Judging from the standard deviation values, the plaid model biclustering result groups have lower standard deviation values compared to the cluster-biplot result groups. Therefore, in general the first approach produces better groups as they are more homogeneous compared to the second approach."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdullah H H Hassan
"

Tesis ini menyajikan pendekatan model ganda terhadap dinamika penularan dan pengendalian cacar monyet (Mpox), menekankan pengaruh yang berbeda dari permukaan terkontaminasi dan mobilitas manusia. Model pertama, "Kontrol Optimal dan Analisis Stabilitas Dinamika Penularan Cacar Monyet dengan Dampak Permukaan Terkontaminasi," menganalisis dinamika penularan Mpox dengan mempertimbangkan permukaan yang terkontaminasi. Model ini menghitung angka reproduksi dasar (R0) dan mengeksplorasi sifat stabilitas dari kedua keadaan keseimbangan bebas penyakit dan endemik. Sebuah bifurkasi maju teridentifikasi pada R0 = 1, menandai ambang kritis untuk penyebaran penyakit, tanpa bifurkasi mundur yang diamati. Analisis sensitivitas menyoroti parameter kunci, dan model ini direkonstruksi sebagai masalah kontrol optimal. Simulasi numerik menilai dampak langkah-langkah pengendalian, menekankan peran permukaan yang terkontaminasi dan memberikan strategi berbasis bukti untuk mitigasi penyakit.

Model kedua, "Kontrol Optimal Dinamika Penularan Cacar Monyet dengan Pertimbangan Mobilitas Manusia," menggabungkan mobilitas manusia ke dalam kerangka deterministik untuk memodelkan dan mengendalikan penyebaran Mpox. Keseimbangan bebas penyakit dianalisis, dan R0 dihitung. Model ini juga merumuskan masalah kontrol optimal, mengidentifikasi strategi efektif untuk mengendalikan Mpox melalui manajemen mobilitas, perawatan, dan pengendalian hewan. Estimasi parameter dan penyesuaian model memastikan keselarasan dengan data dunia nyata, sementara analisis sensitivitas global menggunakan Koefisien Korelasi Peringkat Parsial (PRCC) dan pengambilan sampel hypercube mengidentifikasi parameter kritis yang mempengaruhi R0. Simulasi numerik dari tujuh skenario kontrol menggambarkan potensi dampaknya terhadap dinamika penyakit.

Dengan mengintegrasikan model-model ini, tesis ini menyediakan kerangka kerja komprehensif untuk memahami dan mengendalikan penularan Mpox. Penelitian ini menyoroti pentingnya permukaan yang terkontaminasi dan mobilitas manusia, menawarkan wawasan praktis dan strategi yang kuat untuk intervensi kesehatan masyarakat guna mengurangi dampak Mpox dan penyakit menular serupa.


This thesis presents a dual-model approach to the transmission dynamics and control of monkeypox (Mpox), emphasizing the distinct influences of contaminated surfaces and human mobility. The first model, ”Optimal Control and Stability Analysis of Monkeypox Transmission Dynamics with the Impact of Contaminated Surfaces,” analyzes the transmission dynamics of Mpox considering contaminated surfaces. It calculates the basic reproduction number (R0) and explores the stability properties of both disease-free and endemic equilibrium states. A forward bifurcation is identified at R0 = 1, marking a critical threshold for disease spread, with no backward bifurcation observed. Sensitivity analysis highlights key parameters, and the model is reconstructed as an optimal control problem. Numerical simulations assess the impact of control measures, emphasizing the role of contaminated surfaces and providing evidence-based strategies for disease mitigation.

The second model, ”Optimal Control of Monkeypox Transmission Dynamics with Human Mobility Considerations,” incorporates human mobility into the deterministic framework to model and control Mpox spread. The disease-free equilibrium is analyzed, and R0 is computed. This model also formulates an optimal control problem, identifying effective strategies for controlling Mpox through mobility management, treatment, and animal control. Parameter estimation and model fitting ensure alignment with real-world data, while global sensitivity analysis using Partial Rank Correlation Coefficient (PRCC) and hypercube sampling identifies critical parameters influencing R0. Numerical simulations of seven control scenarios illustrate their potential impact on disease dynamics.

By integrating these models, the thesis provides a comprehensive framework for understanding and controlling Mpox transmission. The research highlights the significance of both contaminated surfaces and human mobility, offering practical insights and robust strategies for public health interventions to mitigate the impact of Mpox and similar infectious diseases."

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Felicia
"Sekolah adalah lembaga pendidikan formal yang bertujuan untuk memberikan pengajaran dan pembelajaran kepada siswa dalam berbagai bidang studi. Sekolah terdiri dari berbagai jenjang pendidikan, taman kanak-kanak hingga sekolah menengah atas. Kualitas performa suatu sekolah dapat diukur dengan melihat capaian Ujian Nasionalnya. Ujian Nasional tingkat SMA wajib diikuti oleh seluruh siswa kelas 12 dan dilaksanakan untuk menetapkan standar nasional yang akan digunakan untuk mengendalikan mutu pendidikan secara nasional. Analisis performa sekolah pada umumnya menggunakan metode konvensional sistem peringkat atau ranking berdasarkan nilai rata-rata Ujian Nasional. Analisis data nilai Ujian Nasional juga dapat dilakukan dengan berbagai cara termasuk pengelompokan data menggunakan algoritma clustering maupun biclustering. Metode clustering dapat digunakan untuk mengidentifikasi nilai sekolah yang mirip satu sama lain. Salah satu metode clustering yang populer digunakan adalah metode hierarki dan metode partisi (metode K-Means). Tetapi pada kenyataannya, masing-masing mata pelajaran memiliki penilaian yang sangat berbeda dari mata pelajaran lainnya. Penerapan biclustering pada metode pengelompokan ini diperlukan untuk mengungkap pola hubungan yang tidak terlihat antara nilai dan mata pelajaran pada data. Hal ini diimplementasikan dalam pengelompokan secara bersamaan dan simultan antara SMA (baris) dan mata pelajaran (kolom). Penelitian ini bertujuan untuk mengelompokkan SMA/MA di DKI Jakarta dan indikator nilai Ujian Nasional tahun 2019 menggunakan metode biclustering Cheng and Church dan Plaid Model serta membandingkan hasil penerapan metode tersebut menggunakan nilai indeks Jaccard dan variansi koherensi. Penelitian ini menggunakan data Capaian Nilai Ujian Nasional tahun 2019 pada SMA/MA di DKI Jakarta yang bersumber dari Kementerian Pendidikan dan Kebudayaan. Hasil penerapan metode biclustering Cheng and Church dan biclustering Plaid Model, menunjukkan bahwa bicluster-bicluster yang dihasilkan metode biclustering Plaid Model memiliki kisaran nilai indeks Jaccard dan variansi koherensi yang lebih rendah dibandingkan biclustering Cheng and Church. Hasil penelitian tersebut menunjukkan bahwa metode biclustering Plaid Model memberikan performa pengelompokan terbaik pada data Ujian Nasional. Diharapkan hasil penelitian ini dapat membantu memberikan wawasan terkait metode yang sesuai untuk diterapkan pada data dengan kondisi yang serupa.

A school is a formal educational institution aimed at providing teaching and learning to students in various fields of study. Schools consist of various levels of education, from kindergarten to high school. The quality of a school's performance can be measured by looking at its National Exam achievements. The National Exam at the high school level must be taken by all 12th-grade students and is conducted to establish national standards that will be used to control the quality of education on a national scale. School performance analysis generally uses conventional ranking systems based on the average National Exam scores. National Exam score data analysis can also be performed in various ways, including data clustering using clustering or biclustering algorithms. Clustering methods can be used to identify schools with similar scores. One of the popular clustering methods used is hierarchical clustering and partitioning methods (K-Means method). However, in reality, each subject has distinctly different assessments from other subjects. The application of biclustering in this clustering method is necessary to reveal hidden patterns of relationships between scores and subjects in the data. This is implemented in simultaneous grouping of both high schools (rows) and subjects (columns). This study aimsto cluster high schools (SMA/MA) in Jakarta and the 2019 National Exam score indicators using the Cheng and Church biclustering method and the Plaid Model biclustering method, and to compare the results of these methods using Jaccard index values and coherence variance. This study uses the 2019 National Exam Score Achievement data for high schools (SMA/MA) in Jakarta sourced from the Ministry of Education and Culture. The results of the application of the Cheng and Church biclustering method and the Plaid Model biclustering method show that the biclusters produced by the Plaid Model biclustering method have a lower range of Jaccard index values and coherence variance compared to Cheng and Church biclustering. The results of this study indicate that the Plaid Model biclustering method provides the best clustering performance for National Exam data. The findings of this study are expected to offer insights into the appropriate methods for application to similar data conditions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldinda Albanna
"Sebuah perusahaan memerlukan sumber daya manusia yang baik agar dapat mencapai visi, misi, serta tujuan yang telah ditetapkan. Sumber daya manusia yang baik dapat dibangun dengan meningkatkan kesejahteraan dan kenyamanan pegawai sehingga produktivitas bekerja diharapkan dapat meningkat. Salah satu upaya yang dapat dilakukan adalah pemberian reward, seperti tunjangan lokasi. Bank Syariah "X" merupakan salah satu lembaga pada bidang perbankan syariah yang memberikan tunjangan lokasi kepada pegawainya. Peraturan yang ditetapkan pada Bank Syariah "X" mengenai tunjangan lokasi merupakan tunjangan yang diberikan kepada pegawai berdasarkan lokasi pegawai tersebut bekerja. Bank Syariah "X" memiliki tiga kategori tunjangan lokasi, yaitu Zona 1, Zona 2, dan Zona 3 & 4. Kebijakan ini terakhir ditetapkan pada tahun 2021. Sedangkan, pada rentang waktu hingga saat ini, terdapat perubahan kondisi, seperti keadaan lokasi outlet (cabang), pertumbuhan ekonomi, dan relokasi outlet Bank Syariah "X". Oleh karena itu, penelitian ini bertujuan untuk menganalisis faktor-faktor yang menjelaskan penentuan zonasi tunjangan lokasi memprediksi zonasi tunjangan lokasi outlet baru dari Bank Syariah "X". Zonasi tunjangan lokasi ditentukan berdasarkan faktor kemahalan, keterpencilan, dan akses lokasi. Faktor-faktor yang diduga mewakili faktor kemahalan, keterpencilan, dan akses lokasi, serta memengaruhi penentuan zonasi tunjangan lokasi adalah indeks harga konsumen (IHK), indeks pembangunan manusia (IPM), indeks kemahalan konstruksi (IKK), indeks pilar infrastruktur (IPI), jarak outlet ke puskesmas terdekat (JOP), dan jarak outlet ke sekolah dasar terdekat (JOSD). Zonasi tunjangan lokasi terdiri dari tiga kategori, yaitu Zona 1, Zona 2, dan Zona 3 & 4 yang bersifat ordinal sehingga model yang cocok adalah regresi logistik ordinal. Berdasarkan tujuan penelitian dan jenis variabel terikat, metode analisis data yang digunakan adalah regresi logistik ordinal. Penelitian ini menghasilkan faktor-faktor yang menjelaskan penentuan zonasi tunjangan lokasi adalah indeks kemahalan konstruksi (IKK), indeks pilar infrastruktur (IPI), dan jarak outlet ke puskesmas terdekat (JOP). Model regresi logistik yang dibentuk menghasilkan akurasi sebesar 70% dan balanced accuracy pada Zona 1 sebesar 81.2%, Zona 2 sebesar 70.8%, dan Zona 3 & 4 sebesar 76.7%. Hasil model regresi logistik ordinal ini dapat digunakan untuk memprediksi zonasi tunjangan lokasi outlet baru dari Bank Syariah "X". Berdasarkan kebijakan awal Bank Syariah "X", diperoleh bahwa sebanyak 80 outlet atau sebesar 35.6% outlet salah diklasifikasikan oleh model.

A company needs good human resources in order to achieve the vision, mission, and goals that have been set. Good human resources can be built by improving employee welfare and comfort so that work productivity is expected to increase. One of the efforts that can be made is the reward, such as location allowances. Bank Syariah “X” is one of the institutions in the field of Islamic banking that provides location allowances to its employees. The regulations set at Bank Syariah “X” regarding location allowances are allowances given to employees based on their replacement. Bank Syariah “X” has three categories of location allowances, namely Zone 1, Zone 2, and Zones 3 & 4. This policy was last established in 2021. Meanwhile, in the time span until now, there have been changes in conditions, such as the location of outlets (branches), economic growth, and the relocation of Bank Syariah “X” outlets. Therefore, this study aims to analyze the factors that explain the determination of location allowance zoning and predict the location allowance zoning of new outlets of Bank Syariah “X”. Location allowance zoning is determined based on the factors of costliness, remoteness, and location access. Factors that are thought to represent the factors of costliness, remoteness, and location access, and influence the determination of location allowance zoning are the consumer price index (CPI), human development index (HDI), construction cost index (CCI), infrastructure pillar index (IPI), outlet distance to the nearest health center (JOP), and outlet distance to the nearest elementary school (JOSD). The location allowance zoning consists of three categories, namely Zone 1, Zone 2, and Zone 3 & 4, which are ordinal in nature, so the suitable model is ordinal logistic regression. Based on the research objectives and the type of dependent variable, the data analysis method used is ordinal logistic regression. This research results in factors that explain the zoning determination of location allowances are the construction cost index (CCI), infrastructure pillar index (IPI), and the distance of the outlet to the nearest health center (JOP). The logistic regression model that was formed produced an accuracy of 70% and balanced accuracy in Zone 1 of 81.2%, Zone 2 of 70.8%, and Zones 3 & 4 of 76.7%. The results of this ordinal logistic regression model can be used to predict the zoning allowances for the location of new outlets of Bank Syariah “X”. Based on the initial policy of Bank Syariah "X", it's obtained that 80 outlets or 35.6% of outlets misclassified by the model. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irba Alifa Taqiyya
"Angka kematian bayi (AKB) didefinisikan sebagai jumlah kematian bayi di bawah usia satu tahun per 1000 kelahiran hidup pada satu tahun tertentu. Angka kematian bayi merupakan salah satu indikator penting yang dapat mencerminkan derajat kesehatan suatu masyarakat. Target angka kematian bayi pada Sustainable Development Goals (SDGs) yang berlaku sejak tahun 2015 sampai tahun 2030 adalah 12 kematian per 1000 kelahiran hidup. Berdasarkan hasil long form sensus penduduk BPS, AKB di Indonesia tahun 2022 adalah 17 kematian per 1000 kelahiran hidup, angka tersebut masih tergolong tinggi apabila dibandingkan dengan beberapa negara di ASEAN. Angka kematian bayi dipengaruhi oleh beberapa variabel. Analisis mengenai variabel-variabel yang memengaruhi AKB dapat dilakukan dengan analisis regresi linier klasik. Namun, nilai pengamatan seperti AKB dan variabel-variabel yang memengaruhinya memuat informasi lokasi (spasial), sehingga seringkali terjadi ketergantungan spasial antar pengamatan yang mengakibatkan asumsi saling bebas pada model regresi linier tidak terpenuhi. Oleh karena itu, pemodelan dapat dilakukan dengan menggunakan model regresi spasial yang memperhatikan keterkaitan antar lokasi. Tujuan dari penelitian ini adalah menganalisis ketergantungan spasial pada data AKB di  Pulau Jawa dan memodelkan AKB di Pulau Jawa tahun 2022 menggunakan General Nesting Spatial Model (GNSM) untuk menganalisis variabel-variabel yang memengaruhinya. Hasil uji autokorelasi spasial menggunakan uji Moran’s I menyimpulkan bahwa terdapat autokorelasi spasial pada variabel terikat (AKB), variabel bebas, dan pada residual model regresi linier. Berdasarkan nilai AIC dan, diperoleh kesimpulan General Nesting Spatial Model (GNSM) lebih baik dalam memodelkan Angka Kematian Bayi (AKB) di Pulau Jawa tahun 2022 dibandingkan Spatial Durbin Model (SDM) dan General Spatial Model(GSM).

Infant mortality rate (IMR) is defined as the number of deaths of infants under one year of age per 1000 live births in a given year. Infant mortality rate is one of the important indicators that can reflect the health level of a community. The infant mortality target in the Sustainable Development Goals (SDGs) that apply since 2015 to 2030 is 12 deaths per 1000 live births. Based on the results of the BPS long form population census, the IMR in Indonesia in 2022 is 17 deaths per 1000 live births, which is still relatively high compared to several countries in ASEAN. Infant mortality rates are influenced by several variables. Analysis of the variables that influence IMR can be done with classical linear regression analysis. However, observation values such as IMR and the variables that affect it contain location (spatial) information, so there is often spatial dependence between observations which results in the assumption of mutual independence in linear regression models not being met. Therefore, modeling can be done using spatial regression model that considers the interrelationships between locations. The purpose of this study is to analyze the spatial dependence of IMR data in Java Island and model IMR in Java Island in 2022 using the General Nesting Spatial Model (GNSM) to analyze the variables that affect it. The results of the spatial autocorrelation test using Moran's I test concluded that there is spatial autocorrelation in the dependent variable (IMR), independent variables, and in the residuals of the linear regression model. Based on the AIC and  values, it is concluded that General Nesting Spatial Model (GNSM) is better in modeling the Infant Mortality Rate (IMR) in Java Island in 2022 than Spatial Durbin Model (SDM) and General Spatial Model (GSM)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Joan Bidadari Annandale
"Penyakit Alzheimer adalah penyakit progresif yang dimulai dengan hilangnya ingatan ringan dan berkembang hingga hilangnya kemampuan bicara dan respon terhadap lingkungan. Penyakit ini belum dapat disembuhkan, dan pengobatan saat ini hanya berfungsi mengurangi gejala sementara. Oleh karena itu, penting untuk mengidentifikasi risiko utama pengembangan Alzheimer dan memberikan diagnosis yang tepat guna mendukung penelitian lebih lanjut. Model regresi Cox-Proportional Hazard sering digunakan untuk menangani data survival tersensor, tetapi saat ini, machine learning menunjukkan potensi besar. Dua model machine learning, Random Survival Forest dan Gradient Boosting Survival Analysis, mampu menangani data survival dan data tersensor tanpa memerlukan asumsi parameter. Kedua model ini juga menghindari overfitting dan lebih mudah diinterpretasi dibandingkan model non-parametrik lainnya. Hasil pada data Alzheimer menunjukkan bahwa Gradient Boosting Survival Analysis memiliki performa terbaik dengan nilai C-index 0.8503, diikuti oleh Random Survival Forest dengan nilai 0.8286. Model regresi Cox-PH memiliki kinerja terendah dengan nilai C-index 0.8092, dan data Alzheimer yang digunakan tidak memenuhi asumsi proportional hazard. Model Gradient Boosting Survival Analysis dan Random Survival Forest mengidentifikasi CDRSB dan FDG sebagai risiko terpenting, sedangkan model Cox-PH mengidentifikasi AV45 dan FDG.

Alzheimer's disease is a progressive disease that begins with mild memory loss and progresses to loss of speech and response to the environment. There is no cure for the disease, and current treatments only temporarily reduce symptoms. Therefore, it is important to identify the main risk factors for developing Alzheimer's and provide an accurate diagnosis to support further research. The Cox-Proportional Hazard regression model is often used to handle censored survival data, but currently, machine learning shows potential. Two machine learning models, Random Survival Forest and Gradient Boosting Survival Analysis, are able to handle survival data and censored data without requiring parameter assumptions. Both models also avoid overfitting and are easier to interpret than other non-parametric models. The results on Alzheimer's data show that Gradient Boosting Survival Analysis has the best performance with a C-index value of 0.8503, followed by Random Survival Forest with a value of 0.8286. The Cox-PH regression model has the lowest performance with a C-index value of 0.8092, and the data used does not meet the proportional hazard assumption. The Gradient Boosting Survival Analysis and Random Survival Forest models identified CDRSB and FDG as the most important risks, while the Cox-PH model identified AV45 and FDG."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fabian Alkautsar
"Analisis triclustering adalah metode data mining yang memiliki tujuan untuk mengelompokkan data tiga dimensi. Metode ini kerap kali digunakan untuk bidang bioinformatika. Pada penelitian ini digunakan metode analisis triclustering delta trimax. Delta Trimax pada intinya adalah metode analisis triclustering yang bertujuan untuk menemukan tricluster yang memiliki nilai MSR yang lebih kecil dari nilai threshold (o) yang telah ditentukan. Penggunaan silhouette coefficient pada penelitian ini adalah untuk membantu menentukan nilai threshold (o) tersebut. Hasil triclustering delta trimax nantinya dievaluasi dengan menggunakan Triclustering Quality Index (TQI). Genetic algorithm (GA) adalah sebuah algoritma pencarian yang efisien yang didasari oleh evolusi biologis dan genetika alam. Algoritma GA digunakan untuk menemukan solusi terbaik. Terdapat tiga operator genetika yang digunakan di dalam GA, yaitu seleksi, crossover, dan mutasi. Pada penelitian ini, digunakan data ekspresi gen tiga dimensi dari sel kanker paru-paru fase stabil (A549) yang diberi perlakuan obat kemoterapi Motexafin Gadolinium (MGd) dan mannitol sebagai grup kontrol, dimana ekspresi gen diamati dalam 6 kondisi dan 3 titik waktu. Tujuan dari penelitian ini adalah untuk mengetahui apa kumpulan gen yang memiliki respon baik terhadap pemberian obat kemoterapi MGd dan kondisi apa yang mempengaruhinya. Pada penelitian ini, himpunan tricluster yang memiliki kualitas terbaik berdasarkan Triclustering Quality Index (TQI) adalah himpunan tricluster yang dihasilkan dengan nilai o = 0,004. Berdasarkan himpunan tricluster tersebut, didapatkan informasi penting mengenai kumpulan gen yang memiliki respon baik terhadap pemberian MGd tapi efek obat MGd tidak bertahan di setiap titik waktu. Terdapat juga gen yang menunjukkan respon baik pemberian obat kemoterapi MGd, tetapi efektivitasnya tidak terlalu maksimal karena responnya beririsan dengan subjek yang hanya diberikan mannitol. Setelah itu, dilihat bagaimana hubungan gen yang berasal dari keseluruhan dataset dengan penyakit melalui gene ontology sebagai informasi tambahan untuk perkembangan obat MGd. Nilai fold enrichment tertinggi pada GO biological process adalah Cytoplasmic Translation, pada GO Cellular Component adalah cytosolic ribosome, dan pada GO Molecular Function adalah structural constituent of ribosome.

Triclustering analysis is a data mining method aimed at grouping three-dimensional data. This method is often used in the field of bioinformatics. In this study, the delta trimax triclustering analysis method is used. Delta Trimax essentially aims to find triclusters with Mean Squared Residue (MSR) values smaller than a predetermined threshold (o). The silhouette coefficient is used in this study to help determine the threshold (o). The results of the delta trimax triclustering are then evaluated using the Triclustering Quality Index (TQI). The genetic algorithm (GA) is an efficient search algorithm based on biological evolution and natural genetics. GA is used to find the best solution. There are three genetic operators used in GA: selection, crossover, and mutation. In this study, three-dimensional gene expression data from stable phase lung cancer cells (A549) treated with the chemotherapy drug Motexafin Gadolinium (MGd) and mannitol as a control group were used, where gene expression was observed under 6 conditions and 3 time points. The aim of this study is to identify which sets of genes respond well to MGd chemotherapy and which conditions influence these responses. The set of triclusters with the highest quality based on the Triclustering Quality Index (TQI) was obtained with o=0.004. From this set of triclusters, important information was obtained about the sets of genes that respond well to MGd, but the effect of MGd does not persist at every time point. There are also genes that show a good response to MGd chemotherapy, but its effectiveness is not maximized because the response overlaps with subjects that were only given mannitol. Subsequently, the relationship between genes from the entire dataset and the disease is observed through gene ontology as additional information for the development of MGd drugs. The highest fold enrichment value in the GO biological process is Cytoplasmic Translation, in the GO Cellular Component is cytosolic ribosome, and in the GO Molecular Function is structural constituent of ribosome."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewita Oktavia Nuur Marwan
"Internet of Things (IoT) merupakan sebuah konsep di mana berbagai perangkat komputasi saling terhubung melalui internet dan memiliki kemampuan untuk mengumpulkan atau mengirimkan data. Perluasan dan kecepatan perangkat komputasi menggunakan jaringan Wi-Fi dapat menghasilkan data yang kompleks dan berdimensi tinggi pada sistem IoT. Data yang berdimensi tinggi dapat menimbulkan beberapa kendala dan perangkat IoT akan menghindari untuk melakukan tugas yang komputasinya berat. Semakin kompleksnya sistem IoT, semakin sulit bagi sistem untuk mengidentifikasi dan menemukan serangan siber. Salah satu upaya yang paling umum digunakan untuk melindungi sistem IoT adalah Intrusion detection system (IDS). Pada penelitian ini dilakukan model berbasis machine learning untuk mengembangkan IDS menggunakan dataset AWID2 dengan tipe “CLS” yang berisikan 2 juta lalu lintas trafik pada jaringan WI-Fi yang dikelompokkan ke dalam empat kelas yaitu, normal, impersonation, injection, dan flooding. Random forest merupakan salah satu teknik ensemble atau gabungan dari sejumlah model decision tree yang memiliki keunggulan-keunggulan dibandingkan dengan metode machine learning lainnya, yaitu dapat mencegah terjadinya overfitting, memiliki waktu komputasi yang rendah, dan memiliki kemampuan lebih baik dalam mengelola dataset yang tidak seimbang. Untuk mengatasi data berdimensi tinggi, dilakukan seleksi fitur mutual information pada algoritma random forest untuk mendapatkan hasil model klasifikasi yang optimal. Hasil dari penelitian menunjukkan bahwa metode seleksi fitur mutual information dengan menggunakan 30 fitur terbaik pada algoritma random forest dengan hyperparameter-tuning random search terbukti dapat meningkatkan performa model klasifikasi dan efisiensi waktu jika dibandingkan menggunakan algoritma random forest tanpa seleksi fitur. Nilai metrik yang diperoleh oleh kombinasi tersebut adalah dengan nilai accuracy = 99,95276%, macro average F1-score = 99,76335%, macro average recall = 99,97962%, dan macro average presicion = 99,54935% dengan waktu prediksi 6,112 detik.

The Internet of Things (IoT) is a concept where various computing devices are interconnected via the internet and have the capability to collect or transmit data. The expansion and speed of computing devices using Wi-Fi networks generate complex and high-dimensional data in IoT systems. High-dimensional data in datasets pose several challenges, as IoT devices tend to avoid tasks that are computationally intensive. As IoT systems become more complex, it becomes increasingly difficult for the system to identify and detect cyber attacks. One of the most common efforts to protect IoT systems is the Intrusion Detection System (IDS). In this study, a machine learning-based model is developed to create an IDS using the AWID dataset with the “CLS” type, which contains 2 million network traffic records on Wi-Fi networks categorized into four classes: normal, impersonation, injection, and flooding. Random forest is an ensemble technique or a combination of multiple decision tree models that has advantages over other machine learning methods, such as preventing overfitting, having low computational time, and having better capabilities in handling imbalanced datasets. To address high-dimensional data, mutual information feature selection is applied to the random forest algorithm to achieve optimal classification model results. The results of the study indicate that the mutual information feature selection method using the top 30 features in the random forest algorithm with random search hyperparameter tuning can improve the performance of the classification model and time efficiency compared to using the random forest algorithm without feature selection. The metrics obtained by this combination are accuracy = 99.95276%, macro average F1-score = 99.76335%, macro average recall = 99.97962%, and macro average precision = 99.54935% with a prediction time of 6.112 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ruth Intan Davina
"Ketidakseimbangan data merupakan tantangan umum dalam klasifikasi, di mana salah satu kelas memiliki ukuran sampel yang jauh lebih sedikit dibandingkan kelas lainnya dalam suatu dataset. Kondisi ini dapat menghasilkan klasifikasi yang memiliki akurasi prediksi yang tinggi untuk kelas mayoritas, tetapi cenderung rendah untuk kelas minoritas yang memiliki kontribusi kecil terhadap kesalahan total. Dalam aplikasi dunia nyata, kesalahan klasifikasi pada kelas minoritas sering kali memiliki konsekuensi yang lebih serius, seperti pada kasus deteksi serangan siber pada sistem keamanan jaringan. Kegagalan dalam mendeteksi serangan siber (false negative) dapat membuka celah keamanan yang berakibat fatal. Untuk menangani masalah ketidakseimbangan data, berbagai metode telah dikembangkan, termasuk pendekatan ensemble seperti SMOTEBoost (Synthetic Minority Oversampling Technique and Boosting) dan RUSBoost (Random Undersampling and Boosting). Pada penelitian skripsi ini dilakukan studi empiris pada data serangan malware dari dataset AWID3 menggunakan metode SMOTEBoost dan RUSBoost dan dibandingkan performanya dengan algoritma dasarnya, AdaBoost. Simulasi dilakukan dengan berbagai kombinasi hyperparameter dan variasi proporsi data training dan testing untuk mengevaluasi kinerja model secara komprehensif. Hasil penelitian menunjukkan bahwa metode SMOTEBoost dan RUSBoost memiliki kinerja yang sebanding dalam mendeteksi kelas minoritas, di mana nilai recall mencapai 0,99, dan lebih unggul dari metode AdaBoost dengan nilai recall 0,87-0,88. Penelitian tambahan yang dilakukan untuk mengevaluasi kinerja masing-masing metode pada berbagai jenis ketidakseimbangan menunjukkan bahwa kinerja metode AdaBoost menurun seiring dengan meningkatnya ketidakseimbangan relatif, sedangkan metode SMOTEBoost dan RUSBoost tetap stabil dengan kinerja yang baik. Namun, ukuran sampel minoritas yang terbatas atau absolute rarity memiliki dampak pada penurunan kinerja metode SMOTEBoost dan RUSBoost.

Imbalanced data is a common challenge in classification tasks, where one class has significantly fewer instances compared to others within a dataset. This condition can result in classification models with high predictive accuracy for the majority class but tend to perform poorly on the minority class, which contributes little to the overall error rate. In real-world applications, misclassifications errors on the minority class often bear more severe consequences, such as in the case of detecting cyber attacks in network security systems. Failure to detect cyber attacks (false negatives) can lead to security breaches with fatal consequences. To address the imbalanced data problem, various methods have been developed, including ensemble approaches such as SMOTEBoost (Synthetic Minority Oversampling Technique and Boosting) and RUSBoost (Random Undersampling and Boosting). In this thesis research, an empirical study was conducted on malware attack data from the AWID3 dataset using the SMOTEBoost and RUSBoost, and their performance was compared with their base algorithm, AdaBoost. Simulations were carried out with various combinations of hyperparameter and different train-test split to comprehensively evaluate the model’s performance. The research results showed that SMOTEBoost and RUSBoost methods had comparable performance in detecting the minority class, achieving remarkable recall values of 0.99, outperformed the AdaBoost method, which had recall values ranging from 0.87 to 0.88. Additional research conducted to evaluate the performance of each method on various types of imbalance showed that the performance of the AdaBoost method decreased as the relative imbalance increased, while the SMOTEBoost and RUSBoost methods maintained a stable and robust performance. However, a limited number of minority instances or absolute rarity had a negative effect on the performance of the SMOTEBoost and RUSBoost methods."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadhila Nur Qamarina
"Light Rail Transit (LRT) Jabodebek merupakan sebuah layanan transportasi umum yang baru diresmikan pada Agustus 2023 dan melayani rute Jakarta, Bogor, Depok, dan Bekasi. Dengan meningkatnya masyarakat yang melakukan mobilitas, kehadiran LRT Jabodebek merupakan bagian dari upaya strategis pemerintah untuk mengatasi masalah kemacetan di wilayah Jabodetabek dan mengurangi ketergantungan masyarakat terhadap kendaraan pribadi. Sejak beroperasi, LRT Jabodebek mendapat respons positif dari masyarakat. Akan tetapi, ada pula kritik yang menunjukkan beberapa kekurangan dalam layanan dan fasilitas. Penelitian ini dirancang untuk mengidentifikasi dan menganalisis faktor-faktor yang dapat memengaruhi tingkat kepuasan pengguna LRT Jabodebek. Variabel yang diduga memiliki pengaruh terhadap kepuasan pengguna LRT Jabodebek adalah kenyamanan, keandalan, keselamatan dan keamanan, aksesibilitas, kesetaraan, dan harga/tarif. Penelitian ini menggunakan pendekatan kuantitatif dengan mengumpulkan data melalui kuesioner selama 1 bulan. Responden dipilih melalui teknik purposive sampling dengan kriteria pengguna LRT Jabodebek yang menggunakan LRT Jabodebek untuk tujuan pekerjaan atau pendidikan dan berusia lebih dari 18 tahun. Jumlah responden yang didapat pada penelitian ini adalah sebanyak 405 orang. Data dalam penelitian ini dianalisis menggunakan metode Partial Least Square-Structural Equation Modeling (PLS-SEM). Hasil penelitian ini menunjukkan bahwa aspek keselamatan dan keamanan, aksesibilitas, dan harga/tarif memiliki pengaruh yang signifikan terhadap kepuasan pengguna LRT Jabodebek.

Light Rail Transit (LRT) Jabodebek is a public transportation service inaugurated in August 2023, serving routes across Jakarta, Bogor, Depok, and Bekasi. With increasing population mobility, the introduction of LRT Jabodebek represents a strategic government initiative to address traffic congestion in the Jabodetabek area and reduce dependence on private vehicles. Since its launch, LRT Jabodebek has received positive feedback from the public. However, there have also been criticisms highlighting certain shortcomings in its services and facilities. This study aims to identify and analyze factors influencing customer satisfaction with LRT Jabodebek. The variables examined include comfort, reliability, safety and security, accessibility, equity, and pricing. A quantitative approach was employed, collecting data via questionnaires over a month. Respondents were selected using purposive sampling, targeting LRT Jabodebek users commuting for work or education and aged 18 years or older. This study gathered responses from 405 participants. Data analysis was conducted using the Partial Least Square Structural Equation Modeling (PLS-SEM) method. This study shows that safety and security, accessibility, and pricing have a significant impact towards customer satisfaction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>