Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Melisa Ayu Angelina
"Smart campus telah menjadi salah satu tren teknologi yang diterapkan di berbagai universitas. Salah satu layanan yang dihasilkan dari smart campus adalah layanan berbasis lokasi (LBS) yang dapat digunakan untuk berbagai kegunaan, seperti navigasi indoor. Implementasi LBS memerlukan teknologi indoor positioning system (IPS) agar dapat menentukan posisi seseorang secara akurat dalam lingkup suatu gedung atau ruangan (indoor). Salah satu metode yang populer digunakan dalam IPS adalah fingerprinting dengan teknik mengukur received signal strength indicator (RSSI) dan menggunakan teknologi penunjang Wi-Fi. Metode fingerprinting terdiri dari dua tahap, yaitu tahap pengumpulan data fingerprint (tahap offline) dan prediksi (tahap online). Proses pengumpulan fingerprint untuk tahap offline memiliki overhead yang sangat tinggi. Pada penelitian ini, tim penulis mengemukakan IPS berbasis semi-autonomous fingerprint collection untuk mengatasi overhead yang sangat tinggi tersebut dengan menerapkan konsep smart campus. Hasil evaluasi menunjukkan bahwa IPS yang dikembangkan dapat mengurangi overhead pengumpulan fingerprint manual sebanyak 550.550 data fingerprint, dengan tingkat accuracy IPS sebesar 52%. Dengan data training yang lebih banyak dan bervariasi yang digunakan untuk melatih model machine learning, hasil eksperimen menunjukkan bahwa performa IPS semi-autonomous fingerprint collection mampu bersaing dengan IPS manual fingerprint collection.
...... Smart campus has become one of the technology trends applied in various universities. One of the services that arose due to smart campus is location-based service (LBS) which can be used for various purposes, such as indoor navigation. The implementation of LBS requires indoor positioning system (IPS) technology that determines a person's position accurately within the scope of a building or room (indoor). One of the popular methods used in IPS is fingerprinting by measuring received signal strength indicator (RSSI) and with the help of Wi-Fi technology. The fingerprinting method consists of two stages, namely the fingerprint data collection stage (offline stage) and the prediction stage (online stage). The fingerprint collection process for the offline stage has a very high overhead. In this research, the author team proposes a semi-autonomous fingerprint collection-based IPS to overcome the very high overhead using smart campus. The evaluation results show that the developed IPS can reduce the overhead of manual fingerprint collection by 550,550 fingerprint data, with an IPS accuracy level of 52%. With larger amount and more varied training data used to train the machine learning model, the experimental results show that the performance of the semi-autonomous fingerprint collection IPS can compete with the manual fingerprint collection IPS."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raissa Tito Safaraz
"Penelitian ini bertujuan untuk mengatasi kekurangan Global Positioning System (GPS) dalam penentuan posisi di dalam ruangan dengan mengembangkan sebuah indoor positioning system (IPS) yang mengkombinasikan Wi-Fi fingerprinting dengan pedestrian dead reckoning (PDR). Wi-Fi fingerprinting memanfaatkan infrastruktur dalam ruangan yang tersebar luas sehingga implementasi menjadi praktis dan meminimalkan biaya instalasi. Namun, Wi-Fi fingerprinting memiliki tantangan karena adanya overhead dalam proses pengumpulan data. PDR melengkapi Wi-Fi fingerprinting dengan melacak pergerakan pengguna melalui deteksi langkah dan arah dengan memanfaatkan sensor inersia dalam smartphone untuk mengurangi kebutuhan pemindaian fingerprint yang sering sambil tetap mempertahankan atau meningkatkan akurasi posisi. Fokus dari penelitian ini adalah penggabungan Wi-Fi fingerprinting dengan PDR untuk menciptakan sebuah IPS yang praktis dan efisien. Teknik machine learning digunakan untuk prediksi posisi pada Wi-Fi fingerprinting. Thresholding digunakan untuk deteksi langkah (step detection), fixed step length digunakan untuk panjang langkah (step length), dan magnetometer dimanfaatkan untuk deteksi arah (heading detection). Implementasi dilakukan pada perangkat Android, di mana desain antarmuka (interface) dan pengalaman pengguna (user experience) tidak termasuk dalam cakupan penelitian. Desain sistem melibatkan aplikasi sisi klien (client-side application), backend service, machine learning service, serta algoritma penggabungan Wi-Fi fingerprinting dengan PDR. Studi ini menemukan bahwa integrasi antara Wi-Fi fingerprinting dengan PDR secara signifikan mengurangi overhead, serta meningkatkan akurasi dari penentuan posisi dalam ruangan.
......This research aims to address the shortcomings of the Global Positioning System (GPS) in indoor positioning by developing an indoor positioning system (IPS) that combines Wi-Fi fingerprinting with pedestrian dead reckoning (PDR). Wi-Fi fingerprinting leverages widely available indoor infrastructure, making implementation practical and minimizing installation costs. However, Wi-Fi fingerprinting faces challenges due to the overhead involved in data collection. PDR complements Wi-Fi fingerprinting by tracking user movement through step detection and direction using inertial sensors in smartphones, thereby reducing the need for frequent fingerprint scanning while maintaining or improving positioning accuracy. The focus of this research is the integration of Wi-Fi fingerprinting with PDR to create a practical and efficient IPS. Machine learning techniques are used for position prediction in Wi-Fi fingerprinting. Thresholding is used for step detection, fixed step length for step length measurement, and a magnetometer for heading detection. The implementation is done on Android devices, with interface design and user experience not being within the scope of this research. The system design involves a client-side application, backend services, machine learning services, and algorithms for integrating Wi-Fi fingerprinting with PDR. This study finds that the integration of Wi-Fi fingerprinting with PDR significantly reduces overhead and improves the accuracy of indoor positioning."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Asyraf
"Penelitian ini bertujuan untuk mengatasi kekurangan Global Positioning System (GPS) dalam penentuan posisi di dalam ruangan dengan mengembangkan sebuah indoor positioning system (IPS) yang mengkombinasikan Wi-Fi fingerprinting dengan pedestrian dead reckoning (PDR). Wi-Fi fingerprinting memanfaatkan infrastruktur dalam ruangan yang tersebar luas sehingga implementasi menjadi praktis dan meminimalkan biaya instalasi. Namun, Wi-Fi fingerprinting memiliki tantangan karena adanya overhead dalam proses pengumpulan data. PDR melengkapi Wi-Fi fingerprinting dengan melacak pergerakan pengguna melalui deteksi langkah dan arah dengan memanfaatkan sensor inersia dalam smartphone untuk mengurangi kebutuhan pemindaian fingerprint yang sering sambil tetap mempertahankan atau meningkatkan akurasi posisi. Fokus dari penelitian ini adalah penggabungan Wi-Fi fingerprinting dengan PDR untuk menciptakan sebuah IPS yang praktis dan efisien. Teknik machine learning digunakan untuk prediksi posisi pada Wi-Fi fingerprinting. Thresholding digunakan untuk deteksi langkah (step detection), fixed step length digunakan untuk panjang langkah (step length), dan magnetometer dimanfaatkan untuk deteksi arah (heading detection). Implementasi dilakukan pada perangkat Android, di mana desain antarmuka (interface) dan pengalaman pengguna (user experience) tidak termasuk dalam cakupan penelitian. Desain sistem melibatkan aplikasi sisi klien (client-side application), backend service, machine learning service, serta algoritma penggabungan Wi-Fi fingerprinting dengan PDR. Studi ini menemukan bahwa integrasi antara Wi-Fi fingerprinting dengan PDR secara signifikan mengurangi overhead, serta meningkatkan akurasi dari penentuan posisi dalam ruangan.
......This research aims to address the shortcomings of the Global Positioning System (GPS) in indoor positioning by developing an indoor positioning system (IPS) that combines Wi-Fi fingerprinting with pedestrian dead reckoning (PDR). Wi-Fi fingerprinting leverages widely available indoor infrastructure, making implementation practical and minimizing installation costs. However, Wi-Fi fingerprinting faces challenges due to the overhead involved in data collection. PDR complements Wi-Fi fingerprinting by tracking user movement through step detection and direction using inertial sensors in smartphones, thereby reducing the need for frequent fingerprint scanning while maintaining or improving positioning accuracy. The focus of this research is the integration of Wi-Fi fingerprinting with PDR to create a practical and efficient IPS. Machine learning techniques are used for position prediction in Wi-Fi fingerprinting. Thresholding is used for step detection, fixed step length for step length measurement, and a magnetometer for heading detection. The implementation is done on Android devices, with interface design and user experience not being within the scope of this research. The system design involves a client-side application, backend services, machine learning services, and algorithms for integrating Wi-Fi fingerprinting with PDR. This study finds that the integration of Wi-Fi fingerprinting with PDR significantly reduces overhead and improves the accuracy of indoor positioning."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julius Prayoga Raka Nugroho
"Penelitian ini bertujuan untuk mengatasi kekurangan Global Positioning System (GPS) dalam penentuan posisi di dalam ruangan dengan mengembangkan sebuah indoor positioning system (IPS) yang mengkombinasikan Wi-Fi fingerprinting dengan pedestrian dead reckoning (PDR). Wi-Fi fingerprinting memanfaatkan infrastruktur dalam ruangan yang tersebar luas sehingga implementasi menjadi praktis dan meminimalkan biaya instalasi. Namun, Wi-Fi fingerprinting memiliki tantangan karena adanya overhead dalam proses pengumpulan data. PDR melengkapi Wi-Fi fingerprinting dengan melacak pergerakan pengguna melalui deteksi langkah dan arah dengan memanfaatkan sensor inersia dalam smartphone untuk mengurangi kebutuhan pemindaian fingerprint yang sering sambil tetap mempertahankan atau meningkatkan akurasi posisi. Fokus dari penelitian ini adalah penggabungan Wi-Fi fingerprinting dengan PDR untuk menciptakan sebuah IPS yang praktis dan efisien. Teknik machine learning digunakan untuk prediksi posisi pada Wi-Fi fingerprinting. Thresholding digunakan untuk deteksi langkah (step detection), fixed step length digunakan untuk panjang langkah (step length), dan magnetometer dimanfaatkan untuk deteksi arah (heading detection). Implementasi dilakukan pada perangkat Android, di mana desain antarmuka (interface) dan pengalaman pengguna (user experience) tidak termasuk dalam cakupan penelitian. Desain sistem melibatkan aplikasi sisi klien (client-side application), backend service, machine learning service, serta algoritma penggabungan Wi-Fi fingerprinting dengan PDR. Studi ini menemukan bahwa integrasi antara Wi-Fi fingerprinting dengan PDR secara signifikan mengurangi overhead, serta meningkatkan akurasi dari penentuan posisi dalam ruangan.
......This research aims to address the shortcomings of the Global Positioning System (GPS) in indoor positioning by developing an indoor positioning system (IPS) that combines Wi-Fi fingerprinting with pedestrian dead reckoning (PDR). Wi-Fi fingerprinting leverages widely available indoor infrastructure, making implementation practical and minimizing installation costs. However, Wi-Fi fingerprinting faces challenges due to the overhead involved in data collection. PDR complements Wi-Fi fingerprinting by tracking user movement through step detection and direction using inertial sensors in smartphones, thereby reducing the need for frequent fingerprint scanning while maintaining or improving positioning accuracy. The focus of this research is the integration of Wi-Fi fingerprinting with PDR to create a practical and efficient IPS. Machine learning techniques are used for position prediction in Wi-Fi fingerprinting. Thresholding is used for step detection, fixed step length for step length measurement, and a magnetometer for heading detection. The implementation is done on Android devices, with interface design and user experience not being within the scope of this research. The system design involves a client-side application, backend services, machine learning services, and algorithms for integrating Wi-Fi fingerprinting with PDR. This study finds that the integration of Wi-Fi fingerprinting with PDR significantly reduces overhead and improves the accuracy of indoor positioning."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Immanuel Brilan Solvanto Darmawan
"Smart campus telah menjadi salah satu tren teknologi yang diterapkan di berbagai universitas. Salah satu layanan yang dihasilkan dari smart campus adalah layanan berbasis lokasi (LBS) yang dapat digunakan untuk berbagai kegunaan, seperti navigasi indoor. Implementasi LBS memerlukan teknologi indoor positioning system (IPS) agar dapat menentukan posisi seseorang secara akurat dalam lingkup suatu gedung atau ruangan (indoor). Salah satu metode yang populer digunakan dalam IPS adalah fingerprinting dengan teknik mengukur received signal strength indicator (RSSI) dan menggunakan teknologi penunjang Wi-Fi. Metode fingerprinting terdiri dari dua tahap, yaitu tahap pengumpulan data fingerprint (tahap offline) dan prediksi (tahap online). Proses pengumpulan fingerprint untuk tahap offline memiliki overhead yang sangat tinggi. Pada penelitian ini, tim penulis mengemukakan IPS berbasis semi-autonomous fingerprint collection untuk mengatasi overhead yang sangat tinggi tersebut dengan menerapkan konsep smart campus. Hasil evaluasi menunjukkan bahwa IPS yang dikembangkan dapat mengurangi overhead pengumpulan fingerprint manual sebanyak 550.550 data fingerprint, dengan tingkat accuracy IPS sebesar 52%. Dengan data training yang lebih banyak dan bervariasi yang digunakan untuk melatih model machine learning, hasil eksperimen menunjukkan bahwa performa IPS semi-autonomous fingerprint collection mampu bersaing dengan IPS manual fingerprint collection.
......Smart campus has become one of the technology trends applied in various universities. One of the services that arose due to smart campus is location-based service (LBS) which can be used for various purposes, such as indoor navigation. The implementation of LBS requires indoor positioning system (IPS) technology that determines a person's position accurately within the scope of a building or room (indoor). One of the popular methods used in IPS is fingerprinting by measuring received signal strength indicator (RSSI) and with the help of Wi-Fi technology. The fingerprinting method consists of two stages, namely the fingerprint data collection stage (offline stage) and the prediction stage (online stage). The fingerprint collection process for the offline stage has a very high overhead. In this research, the author team proposes a semi-autonomous fingerprint collection-based IPS to overcome the very high overhead using smart campus. The evaluation results show that the developed IPS can reduce the overhead of manual fingerprint collection by 550,550 fingerprint data, with an IPS accuracy level of 52%. With larger amount and more varied training data used to train the machine learning model, the experimental results show that the performance of the semi-autonomous fingerprint collection IPS can compete with the manual fingerprint collection IPS."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library