Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
M. Samsuri
"Salah satu prioritas dalam agenda jangka panjang pengembangan energi baru dan terbarukan yang tertuang dalam Agenda Riset Nasional (ARN) adalah pengembangan bioetanol dari material lignoselulosa. Masalah yang mendasar dalam proses peningkatan produksi etanol dari material lignoselulosa termasuk bagas adalah bagaimana mengkonversi secara menyeluruh polisakarida menjadi monosakarida dengan memanfaatkan enzim-enzim yang spesifik. Untuk material bagas, yang dimaksud konversi menyeluruh adalah konversi selulosa, xylan dan selobiosa. Selain itu, keberadaan lignin dalam bagas dapat menghambat akses enzim dalam memecah polisakarida menjadi monosakarida, sehingga menyebabkan produksi etanol tidak optimal.
Pada penelitian ini, telah dilakukan penelitian dengan teknologi proses baru untuk meningkatkan produksi etanol dari bagas melalui proses sakarifikasi dan fermentasi serempak (SSF). Penelitian yang dilakukan adalah mencakup proses menyeluruh perlakuan awal dengan beberapa jamur pelapuk putih (Ceriporiopsis subvermispora, Lentinus edodes dan Pleurotus ostreatus) dan steaming, hidrolisis menggunakan kombinasi multi enzim selulase, selobiasedan xylanase serta proses fermentasi dengan Saccharomyces cerevisiae AM 12 yang dilakukan secara serempak.
Kombinasi enzim selulase-selobiase, selulase-xylanase dan selulase-selobiase-xylanase meningkatkan produksi etanol dari bagas dalam proses SSF. Konsentrasi etanol tertinggi yang dihasilkan dengan kombinasi enzim selulase-selobiase, selulase-xylanase dan selulase-selobiase-xylanase berturut-turut 6,9 g/L, 8,6 g/L dan 9,8 g/L, sedangkan dengan enzim selulase saja sebesar 6,0 g/L. Persentase ethanol yield (berbasis berat bagas) yang dihasilkan dengan kombinasi enzim tersebut berturut-turut sebesar 13,9%, 17,2% dan 19,7%, sedangkan dengan enzim selulase saja sebesar 11,95%. Pencapaian hasil teori (theoretical yield) tertinggi dengan menggunakan kombinasi enzim selulase-selobiase-xylanase sebesar 49,5%, sedangkan dengan enzim selulase saja pencapaian hasil teori sebesar 42,0%.
Peningkatan produksi etanol dengan enzim selulase-selobiase membuktikan bahwa selain glukosa, selobiosa juga terbentuk dalam proses hidrolisis parsial selulosa oleh enzim selulase. Selobiosa yang terbentuk kemudian secara simultan dikonversikan menjadi glukosa oleh enzim selobiase, yang dibuktikan dengan peningkatan glukosa sebesar 16,2% setelah proses dihidrolisis dengan enzim selulase-selobiase. Selanjutnya glukosa yang terbentuk secara simultan dikonversi menjadi etanol oleh S. cerevisiae.
Selain itu, pengingkatan jumlah etanol yang dihasilkan dengan kombinasi selulase-selobiase-xylanase juga membuktikan bahwa reaksi multi enzim dengan masing-masing substrat yang spesifik dapat terjadi dalam proses SSF. Reaksi multi enzim tersebut yaitu reaksi hidrolisis selulosa dengan selulase menjadi glukosa, hidrolisis xylan dengan xylanase menjadi xylosa dan hidrolisis selobiosa menjadi glukosa dengan enzim selobiase. Selanjutnya secara simultan glukosa dan xylosa yang terbentuk dikonversi menjadi etanol dengan S. cerevisiae. Hal ini dibuktikan dengan menurunnya kadar selulosa dan hemiselulosa setelah proses SSF berlangsung yaitu dari 50% dan 20% menjadi 22% dan 10%.
Peningkatan sangat signifikan pada produksi etanol dari bagas dengan kombinasi enzim selulase-selobiase, selulase-xylanase dan selulase-selobiase-xylanase setelah dilakukan kombinasi perlakuan awal C. subvermispora dan steaming 180_C. Konsentrasi etanol yang dihasilkan dengan kombinasi enzim dan perlakuan awal tersebut berturut-turut sebesar 12,9 g/L, 13,5 g/L dan 18,2 g/L. Dengan persentase ethanol yield yang dihasilkan berbasis berat bagas sebesar 25,7%, 26,9% dan 36,4%.
Peningkatan etanol yang dihasilkan setelah perlakuan awal dengan C. subvermispora dan steaming disebabkan adanya proses biodegradasi lignin oleh C. subvermispora dan pelarutan kristal-kristal selulosa dan hemiselulosa selama proses perlakuan dengan steaming berlangsung. Hal ini dibuktikan dengan adanya penurunan kadar lignin sebesar 26,5%, selulosa sebesar 9,4% dan hemiselulosa 14,1% setelah kombinasi perlakuan awal C. subvermispora dan steaming pada suhu 180_C.
Ethanol yield tertinggi 36,4% dengan pencapaian theoretical yield sebesar 91,4%, yaitu dengan enzim selulase-selobiase-xylanase yang dikombinasikan dengan perlakuan awal C. subvermispora dan steaming 180_C. Pencapaian hasil teori ini meningkat sangat signifikan dibandingkan dengan etanol yang dihasilkan jika hanya menggunakan enzim selulase saja (42,03%). Peningkatan tersebut membuktikan bahwa kombinasi perlakuan awal C. subvermispora dan steaming yang dipadukan dengan hidrolisis multi enzim selulase-selobiase-xylanase sangat efektif dalam mengkonversi bagas menjadi etanol dalam proses SSF. Hal ini dibuktikan dengan menurunnya kadar selulosa dan hemiselulosa pada residu bagas setelah proses SSF berlangsung yaitu dari 50% dan 20% menjadi 4,5% dan 3,5%.
One of priority in the long term National Research Agenda for renewable energy development is bioethanol production from lignocellulosic materials. The problem in increasing ethanol production from lignocellulosic material, including bagasse, is how to convert completely polysaccharide to monosaccharide using specific enzymes. Complete conversion of bagasse includes how to convert cellulose, xylan and cellobiose. Another problem is the existence of lignin in bagasse, which makes it difficult for enzyme to access and, thus to convert polysaccharide to monosaccharide. It causes unoptimal ethanol production.
Novel technology to produce ethanol from bagasse by simultaneous saccharification and fermentation (SSF) was carried out. Experiments included pre-treatments of bagasse with several white rot fungi (Ceriporiopsis subvermispora, Lentinus edodes and Pleurotus ostreatus) and steaming; hydrolysis with combination cellulase, cellobiase and xylanase enzymes; followed by fermentation using Saccharomycess cerevisiae AM 12.
Combination of cellulase-cellobiase, cellulase-xylanase and cellulase-cellobiase-xylanase increased the ethanol production from bagasse. The highest ethanol concentration after hydrolysis with those enzymes were 6.9 g/L, 8.6 g/L and 9.8 g/L, respectively, compared to using cellulase only which was 6.0 g/L. The highest yield of ethanol (based on bagasse) with combination of those enzymes were 13.9%, 17.2% and 19.68%, while using cellulase only was 12.0%. The highest result of ethanol production in theoretical yield with combination of enzymes cellulase-cellobiase-xylanase is 49.5%, while using cellulase only 42.0%.
Beside glucose, the increase of ethanol production from bagasse with cellulase-cellobiase enzymes confirmed that cellobiose was also produced in partial hydrolysis of cellulose with cellulase enzyme. Cellobiose was then converted to glucose simultaneously with cellobiase enzyme, this was revealed by the increase of glucose content about 16.2% after hydrolysis with cellulase-cellobiase enzymes. And then glucose was converted to ethanol simultaneously with S. cerevisiae.
The increase of ethanol yields with combination of cellulase-cellobiase-xylanase enzymes confirmed that multi enzymes reaction took place on specific substrates. This multiple reactions includes hydrolysis of cellulose to glucose by cellulase, hydrolysis of xylan to xylose by xylanase enzyme and hydrolysis of cellobiose to glucose by cellobiase enzyme. Then glucose and xylose were converted to ethanol simultaneously by S. cerevisiae. This phenomenon was revealed by weight loss of cellulose and hemicellulose of bagasse after SSF process from 50% and 20% to 22% and 10%, respectively.
The significance increase of the ethanol production was achieved after pre-treatment with combination of C. subvermispora and steaming 180_C. The highest ethanol production at combination of cellulase-cellobiase, cellulase-xylanase and cellulase-cellobiase-xylanase after pre-treatment C. subvermispora and steaming 180_C were 12.9 g/L, 13.5 g/L and 18.2 g/L, respectively. The highest yield of ethanol (based on bagasse) with those combination were 25.7%, 26.9% dan 36.4%, respectively.
The increase of ethanol yield after pre-treatment with C. subvermispora and steaming was caused by lignin biodegradation of bagasse with C. subvermispora and dissolution of cellulose and hemicelluose crystalline in steaming treatment process. This was revealed by lignin loss about 26.5%, cellulose loss about 9.4% and hemicellulose loss about 14.1% after pre-treatment with combination of C. subvermispora and steaming at 180_C.
The highest achievement of ethanol production in theoretical yield with combination cellulase-cellobiase-xylanase after pre-treatment with combination of C. subvermispora and steaming at 180_C was 91.4%. This was a very significant increase compared to the ethanol production in theoretical yield when using cellulase only (42.0%). This increase of ethanol yield revealed that combination of pre-treatment and hydrolysis of multi enzymes very effectively converting bagasse to ethanol in SSF. This phenomenon was confirmed by weight loss of cellulose and hemicellulose in bagasse after SSF process from 50% and 20% to 4.5% and 3.5%.
"
Depok: Program Pascasarjana Universitas Indonesia, 2009
T25806
UI - Disertasi Open  Universitas Indonesia Library
cover
Abdul Hamid Budiman
"ABSTRAK
Katalis komersial tidak selalu mempunyai properti yang baik. Katalis ini masih memerlukan perlakuan sehingga dapat memberikan kinerja yang tinggi ketika diaplikasikan pada fuel cell. Metode yang sering digunakan untuk sintesa katalis PtCo/C adalah impregnasi logam pada Platina yang disangga Karbon diikuti proses paduan/alloying pada suhu tinggi. Perlakuan pada suhu tinggi akan menyebabkan aglomerasi sehingga katalis menjadi lebih besar ukurannya, akibatnya terjadi penurunan aktifitas.
Struktur core shell terdiri atas kulit/shell dari suatu atom yang mengelilingi inti/core dari jenis atom yang lain. Struktur ini dapat dicapai melalui proses aneling suhu tinggi, chemical leaching ataupun teknik deposisi elektrokimia. Namun demikian, semua metode tersebut mempunyai kelemahan antara lain berkurangnya luas aktif area, pembentukan shell logam nobel yang tidak lengkap dan memerlukan kontrol potensial selama preparasinya.
Distribusi atom dan alloying extent dari bimetal nanopartikel dapat mempengaruhi aktifitas katalis. Akhir-akhir ini aplikasi x-ray absorption spectroscopy (XAS) banyak digunakan pada bimetal nanopartikel. Namun demikian studi tentang distribusi atom ataupun alloying extent masih terbatas. Pemahaman teori tentang distribusi atom dan alloying extent masih sangat diperlukan.
Tujuan dari studi ini adalah untuk mempelajari peningkatan aktifitas dan stabilitas katalis komersial PtCo/C dengan perlakuan Nitrogen dan Karbon Monoksida untuk mempelajari efek ukuran partikel dan struktur katalis terhadap aktifitas dan stabilitasnya.
Metodologi yang digunakan meliputi perlakuan katalis komersial PtCo/C, karakterisasi fisik, karakterisasi kimia serta pengujian kinerja sel tunggal. Katalis dilakukan perlakuan dengan Nitrogen pada berbagai macam suhu untuk mengetahui efek ukuran partikel terhadap aktifitas dan stabilitasnya, serta perlakuan dengan Karbon Monoksida pada berbagai macam waktu untuk mengetahui efek struktur katalis terhadap aktifitas dan stabilitasnya. Karakterisasi fisik yang dilakukan adalah x-ray diffraction (XRD), transmission electron microscopy (TEM) dan XAS. Sedangkan karakterisiasi kimia yang dilakukan adalah cyclic voltammetry (CV) dan linear sweep voltammetry (LSV).
Analisa XRD yang dilakukan pada katalis PtCo/C dengan perlakuan Nitrogen menunjukkan bahwa ukuran partikel menjadi lebih besar dengan bertambahnya suhu perlakuan. Analisa TEM menggambarkan distribusi partikel yang merata dan sesuai dengan hasil XRD. Sedangkan, analisa elektrokimia menunjukkan kurva voltammogram yang bentuknya seperti kurva voltammogram Pt.
Untuk katalis PtCo/C dengan perlakuan Karbon Monoksida, analisa XRD menunjukkan bahwa adanya puncak Kobal untuk katalis dengan perlakuan selama 5, 7, 10 dan 15 jam. Hal ini mengindikasikan adanya segregasi ke permukaan katalis. Analisa XAS memberikan hasil struktur Pt rich in core Co rich in shell untuk katalis dengan perlakuan selama 1, 3 dan 5 jam. Sebaliknya perlakuan selama 7, 10 dan 15 jam menghasilkan struktur Pt rich in shell Co rich in core. Dari analisa elektrokimia yang dilakukan, dihasilkan tidak adanya perubahan CV untuk katalis dengan perlakuan selama 1-5 jam, mengindikasikan adanya peningkatan aktifitas. Sebaliknya perlakuan selama 7-15 jam menunjukkan katalis bersifat kurang aktif. Pengujian stabilitas menunjukkan katalis dengan perlakuan 1-5 jam bersifat tidak stabil. Hal ini dikarenakan Pt yang terletak di core tidak mampu untuk melindungi Co yang berada di shell dari disolusi. Sebaliknya katalis dengan perlakuan selama 7-15 jam bersifat stabil, karena Pt yang terletak di shell mampu melindungi Co yang berada di core dari proses disolusi.
Pengujian kinerja sel tunggal menunjukkan bahwa katalis dengan perlakuan Karbon Monoksida selama 3 jam merupakan katalis yang mempunyai kinerja terbaik. Hal ini sesuai dengan aktifitas masa dan luas permukaan spesifik dari katalis dengan perlakuan Karbon Monoksida selama 3 jam, di mana katalis ini mempunyai aktifitas paling baik terhadap reaksi reduksi oksigen. Terlihat bahwa terjadi peningkatan power densitas sebesar 20,49 %, di mana katalis PtCo/C komersial mempunyai power density 88,33 mW/cm2 dan katalis PtCo/C dengan perlakuan Karbon Monoksida selama 3 jam mempunyai power density 108,82 mW/cm2.

ABSTRACT
The synthesis procedure on a commercial catalyst still needs to be improved in order to get a better catalyst performance for application on fuel cell. There is no guarantee that the commercial catalyst has a good property. The commonly used method to prepare PtCo/C electrocatalyst is through impregnation of the second metal on platinum supported carbon (Pt/C) followed by alloying at high temperature in an inert gas. This high temperature heat treatment facilitates the growing of the alloy nanoparticles (NPs) due to sintering, which is undesirable because it may result in reduction of the Pt mass activity for the oxygen reduction reaction (ORR).
Core shell NPs consist of a shell of one type of atom surrounding a core of another type of atom. This structure can be achieved by high temperature annealing, chemical leaching of the non noble material or electrochemical deposition technique.
Nevertheless, all of these methods exhibit significant disadvantages such as losses in active surface area and material, formation of an incomplete noble metal shell, and necessity for potential control during preparation.
It is important to understand the atomic distribution and alloying extent of participating elements in individual bimetallic NPs, as these factors also influence the intrinsic catalytic activity. In recent years, x-ray absorption spectroscopy (XAS) studies have been well explored on bimetallic NPs. However, XAS studies focusing on estimation of atomic distributions or alloying extent in the NPs are limited. Therefore, we propose a methodology to estimate the structural characteristics such as alloying extent or atomic distribution in bimetallic NPs, by deriving the structural parameters from XAS analysis and to demonstrate the results on commercially available carbon supported PtCo NPs.
The overall objective of this study is to enhance the activity and stability of commercial PtCo/C electrocatalyst through treatment with nitrogen (N2) and carbon monoxide (CO). In this work, a commercial PtCo/C catalyst was treated using two different strategies to study the effect of particle size and structure on its activity and stability The research methodology consists of PtCo/C catalyst treatment, physical characterization, electrochemical characterization and single cell proton exchange membrane (PEM) fuel cell performance test. The catalysts were treated with nitrogen at various temperatures in order to study the effect of the particle size on its activity and stability, and also treated with carbon monoxide at various times in order to study the effect of the structure on its activity and stability. Physical characterizations were done through x-ray diffraction (XRD), transmission electron microscopy (TEM) and XAS. The electrochemical characterizations were done using cyclic voltammetry (CV) and linier sweep voltammetry (LSV).
For the PtCo/C that is subjected to N2 treatment, XRD result shows the particle size is increased with increasing temperature of treatment. TEM result shows that all the PtCo NPs are well dispersed on the surface of carbon and it is in accordance with the XRD result. The electrochemical characterization shows that the base voltamogram becomes more Pt-like, which is indicative of leaching Co from the surface. While for PtCo/C that is subjected to CO treatment, the XRD result shows that treatmnet for 5, 7, 10 and 15 hours leads to surface segregation, at which the peak of Co-related species is clearly observed. The alloying extent and coordination number of the catalysts were investigated with XAS, show that treatments for 1, 3 and 5 hours resulted in Pt rich in core Co rich in shell. On the contrary, treatments for 7, 10 and 15 hours resulted in Pt rich in shell Co rich in core.
It is clearly demonstrated that the PtCo/C subjected to CO treatment for 1-5 hours shows the enhanced ORR activity, but the catalyst is unstable due to the dissolution of Co, while samples treated for 7-15 hours display poor activities. However, the catalyst is stable, which is likely due to the fact that Pt in the surface protects Co from dissolution.
The single cell PEM fuel cell performance test shows that PtCo/C subjected to CO treatment for 3 hours shows the best performance. This result is in accordance with the specific surface area and mass activity of PtCo/C that is subjected to CO treatment for 3 hours, which has a better activity toward ORR. Catalyst treatment would increase the fuel cell performance by 20.49 % (Power density of commercial PtCo/C electrocatalyst: 88.33 mW/cm2, PtCo/C electrocatalyst subjected to CO treatment for 3 hours: 108.82 mW/cm2)"
Depok: 2011
D1285
UI - Disertasi Open  Universitas Indonesia Library