Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 41 dokumen yang sesuai dengan query
cover
Sianturi, Julius Hotma Baginda
Abstrak :
COVID-19 merupakan penyakit yang telah menjadi pandemi pada tahun 2020. Penyakit ini dinyatakan sebagai pandemi karena menjadi wabah yang sangat luas hingga seluruh dunia terpapar. Dalam usaha penekanan penyebaran penyakit COVID-19, banyak peneliti yang menerapkan deep learning untuk mendeteksi penyakit ini. Convolutional Neural Network(CNN) merupakan jenis deep learning yang paling banyak digunakan untuk usaha mengklasifikasi citra X-ray paru-paru. Algoritma yang dikembangkan pada penelitian ini menggunakan deep learning dengan model CNN ResNet152v2 dengan Python untuk bahasa pemrogramannya serta Keras Tensorflow sebagai API. penelitian ini melakukan beberapa ekperimen untuk meningkatkan akurasi dan performa dengan memvariasikan dataset serta parameter seperti epoch, batch size, optimizer. Performa terbaik didapatkan dengan pengaturan parameter pada jumlah dataset 3000, epoch 15, batch size 16, dan optimizer Nadam dengan nilai akurasi hingga 96%. Hasil akurasi ini merupakan peningkatan yang didapatkan penelitian terdahulu yang menggunakan model VGG16 dengan akurasi hingga 92%. ......COVID-19 is a disease that has become a pandemic in 2020. This disease is declared a pandemic because it is an epidemic that is so widespread that the entire world is exposed. In an effort to suppress the spread of the COVID-19 disease, many researchers have applied deep learning to detect this disease. Convolutional Neural Network (CNN) is a type of deep learning that is most widely used to classify X-ray images of the lungs. The algorithm developed in this study uses deep learning with the CNN ResNet152v2 model with Python for the programming language and Keras Tensorflow as the API. This study conducted several experiments to improve accuracy and performance by varying the dataset and parameters such as epoch, batch size, optimizer. The best performance is obtained by setting parameters on the number of datasets 3000, epoch 15, batch size 16, and optimizer Nadam with an accuracy up to 96%. The result of this accuracy is an improvement obtained from previous studies using the VGG16 model with an accuracy of up to 92%.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fatimah Kayla Kameela
Abstrak :

Gangguan pendengaran pada umumnya dapat terjadi sejak lahir (tuli kongenital) atau di kemudian hari (tuli didapat). Kedua grup memiliki perbedaan karakteristik yang berdampak pada proses pengobatannya. Oleh karena itu, mengetahui kedua jenis penyakit tersebut terlebih dahulu sebelum melanjutkan ke tindakan selanjutnya adalah sangat penting. Namun, saat ini di Indonesia masih belum ada program skrining yang berjalan untuk mendeteksi gangguan pendengaran pada anak sejak dini. Menanggapi hal tersebut, penelitian ini bertujuan menganalisis data Diffusion Tensor Imaging (DTI) dari kedua jenis pasien tuli untuk dilanjutkan ke proses klasifikasi dan clustering supaya didapat model yang dapat membedakan kedua kondisi tersebut. Pengembangan model dilakukan melalui proses hyperparameter tuning serta percobaan terhadap dataset dengan dan tanpa fitur usia. Selanjutnya, diterapkan juga percobaan terhadap ada atau tidaknya data validasi terpisah. Performa model dianalisis berdasarkan beberapa metrik evaluasi seperti akurasi, presisi, spesifisitas, recall, confusion matrix, skor F1, area under the ROC curve (AUC-ROC), precision-recall curve, dan silhouette score. Hasil analisis secara keseluruhan menunjukkan bahwa performa model menggunakan fitur usia lebih baik, yaitu pada model klasifikasi diperoleh spesifisitas 89.89%, skor F1 91.93%, dan AUC-ROC 88.61%, dan pada model clustering diperoleh nilai silhouette sebesar 0.8524. Analisis tanpa fitur usia menunjukkan bahwa kedua kelompok dapat diklasifikasi, namun tidak berdasarkan kondisi maturasinya, sedangkan hasil clustering menunjukkan pengelompokkan kelas yang berbeda dari klasifikasi. Penelitian ini berpotensi untuk dikembangkan lebih lanjut, terutama jika kedua kelas memiliki rasio dataset yang seimbang. ......In general, hearing disorders can occur since birth (congenital hearing loss) or later in life (acquired hearing loss). Both group has different characteristics that affected the treatment process. Therefore, knowing both types of diseases beforehand before proceeding to further actions is crucial. However, currently in Indonesia, there are no any functional screening programs to detect hearing disorders on children from early ages. In response to this, this study aims to analyze Diffusion Tensor Imaging (DTI) data from both types of deaf patients to proceed to the classification and clustering processes to obtain a model that can differentiate between the two conditions. Model development is conducted through hyperparameter tuning and experimentation with datasets with and without age features. Additionally, we will experiment with the presence or absence of separate validation data. The model's performance is analyzed based on several evaluation metrics such as accuracy, precision, specificity, recall, confusion matrix, F1 score, area under the ROC curve (AUC-ROC), precision-recall curve, and silhouette score. The overall analysis results show that the model performance using age features is better, namely in the classification model, specificity of 89.89%, F1 score of 91.93%, and AUC-ROC of 88.61% are obtained. Meanwhile, in the clustering model, a silhouette score of 0.8524 is obtained. The analysis without age features indicates that both groups can be classified, but not based on their maturation conditions, while the clustering results show different grouping of classes from the classification. This research has the potential for further development, particularly if both classes have a balanced dataset ratio and age data distributed evenly.

Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Izra Halim Razzak
Abstrak :
Penelitian ini mengembangkan algoritma rekonstruksi citra gelombang mikro yang menggunakan pendekatan compressive sensing (CS) dimana data yang digunakan bersifat sparse – jumlah data bernilai nol atau yang dapat diabaikan yang ada dalam sebuah set data jauh lebih banyak dibandingkan jumlah data yang tidak bernilai nol. Pengembangan dilakukan dengan menambahkan total variation (TV) sebagai regularisasi spasial dan menggunakan metode alternating direction method of multipliers (ADMM) untuk menyelesaikan masalah optimasi yang dirancang dalam bentuk lagrange. Dengan merekonstruksi phantom simulasi, hasil rekonstruksi yang dilakukan oleh TV berhasil mengungguli algoritma simultaneous algebraic reconstruction technique (SART) dengan selisih nilai SSIM sebesar 0,0179 dan selisih nilai MSE sebesar 0,0119; dan mengungguli algoritma CS tanpa TV dengan selisih nilai SSIM sebesar 0,1699 dan selisih nilai MSE sebesar 0,0444. Nilai ini menunjukkan bahwa tidak hanya TV berhasil diterapkan pada CS, namun juga berhasil meningkatkan performa dan hasil citra rekonstruksi dari algoritma tersebut. ......This research improves the compressive sensing (CS) based microwave imaging reconstruction algorithm where used data is sparse – the number of zeros or negligible data of a dataset is far beyond the number of non-zero data. The improvement is done by applying total variation (TV) as the spatial regularization and utilizing alternating direction method of multipliers (ADMM) to solve optimization problem in the form of Lagrange equation. By reconstructing simulation phantom, reconstructed image done by TV surpasses the simultaneous algebraic reconstruction technique (SART) with SSIM margin of 0.0179 and MSE margin of 0.0119; and surpasses CS without TV with SSIM margin of 0.1699 and MSE margin of 0.0444. This shows that not only TV is able to be applied to CS, but also manages to improve the performance of CS algorithm and the reconstructed image of said algorithm.
Depok: Fakultas Teknik Universitas Indonesia , 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Zaini
Abstrak :
ABSTRAK Dalam kurun waktu lebih dari dua dekade terakhir, deteksi anomali menjadi salah satu topik yang menarik bagi para peneliti untuk dikembangkan. Collaborative-Representation-Based Detector (CRD) merupakan salah satu metodologi deteksi anomali yang berhasil dikembangkan. CRD melakukan aproksimasi masing-masing piksel pada background yang direpresentasikan oleh piksel-piksel tetangga, sementara itu piksel anomali tidak bisa direpresentasikan sama seperti piksel yang lainnya. Citra yang dihasilkan dari metodologi ini tergolong baik, karena mampu mendeteksi piksel anomali dengan cukup akurat. Kelemahannya adalah, citra hasil deteksi yang dihasilkan cenderung memperlihatkan banyak piksel yang sebenarnya bukan anomali walaupun dengan nilai intesitas yang sangat kecil. Penerapan threshold penyesuaian Root-Mean pada penelitian ini akan melakukan filter terhadap piksel-piksel pengganggu yang tidak diinginkan pada citra hasil proses CRD tersebut sehingga memberikan hasil yang lebih memuaskan. Dari sembilan data yang digunakan pada penelitian ini, hampir semua data menunjukan perbaikkannya setelah dilakukan filter dengan threshold RM.
ABSTRACT Over the last two decades, anomaly detection is one of most interesting topics to develop for researchs. Collaborative-Representation-Based Detector (CRD) becomes one of the methodologies that was successfully developed. In CRD, each pixel in background can be approximately represented by its spatial neighborgoods, while anomalies cannot. The output image of this methodology can be categorized as good enough because it can detect the anomalies pixel accurately. However, the output image tend to show us there are many normal pixels around the anomaly pixel, although in very low intensity. Implementation of Root-Mean Adjustment threshold in this research will filter that unexpected pixel to obtain the statisfactory results. To compare performences of Root-Mean Adjustment threshold. Most of the nine Data show us that its unexpected can be filtered and show the better results.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mumfaridatul Jannah
Abstrak :
Stunting adalah kondisi dimana balita memiliki panjang atau tinggi badan yang kurang jika dibandingkan dengan anak seusianya. Balita stunting termasuk ke dalam masalah gizi kronik yang disebabkan oleh banyak faktor seperti kondisi sosial ekonomi, gizi ibu saat hamil, riwayat penyakit pada bayi, dan kurangnya asupan gizi pada bayi. Balita stunting di masa yang akan datang akan mengalami kesulitan dalam mencapai perkembangan fisik dan kognitif yang optimal. Penelitian ini bertujuan untuk menganalisis variabel atau faktor dominan yang mempengaruhi kejadian stunting di Indonesia. Penelitian ini menggunakan data sekunder dari Indonesia Family Life Survey (IFLS) tahun 2014-2015, yang dilakukan di 13 provinsi di Indonesia. Pengumpulan data disaring berdasarkan variabel yang diujikan menggunakan perangkat lunak analisis statistika (Stata). Data output yang dihasilkan kemudian diolah dengan menggunakan algoritma Principal Component Analysis untuk mengekstraksi faktor dominan yang akan dianalisa. Hasil penelitian menunjukkan bahwa faktor yang paling dominan pada kejadian stunting adalah faktor tinggi badan, pendidikan ayah, dan pengeluaran asupan protein. ......Stunting is a medical term that refers to an abnormal condition of the baby's body. In term of height and weight of the body, stunting babies tend to have the smaller one instead of normal. In Indonesia, this issue is categorized as a cronical issue that is caused by many factors such as social-economic condition, the health condition especially nutrition intake of pregnant women, the baby's history of disease and the less of nutrition intake of baby. In the future, stunting baby will be difficult in getting the optimal growth physically and cognitively. This study aims to analyze the dominant factors or variables that cause the occurance of stunting in Indonesia. It will use secondary data from Indonesia Family Life Survey (IFLS) 2014-2015 that is conducted in 13 provinces in Indonesia. The data was preprocessed by filtering based on some tested variables using statistics analysis software (Stata). Output data were processed by using Principal Component Analysis algorithm to extract dominant factors which will be analyzed. The result of study shows that the most dominant factors that caused stunting occurance are height of the body, education level of baby's father and cost for protein intake.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasnan Fiqih
Abstrak :
Hampir separuh dunia bergantung pada makanan yang berasal dari laut sebagai sumber protein utama. Di Pasifik Barat dan Tengah 60% dari ikan tuna ditangkap secara illegal, tidak dilaporkan, dan tidak diatur dengan regulasi dapat mengancam ekosistem laut, pasokan ikan global, dan mata pencaharian lokal. Salah satu solusi yang dapat dilakukan adalah dengan menggunakan kamera keamanan untuk menangkap gambar aktivitas kapal. Pada penelitian ini akan dibuat sistem untuk mengklasifikasi jenis ikan yang ditangkap dari gambar kamera keamanan kapal tersebut. Sistem ini menggunakan model transfer learning yang sudah dilakukan fine tuning dan dilatih menggunakan dataset yang disediakan oleh The Nature Conservancy. Dari penelitian ini didapatkan performa terbaik dengan akurasi 98.19% menggunakan model EfficientNetV2L dan optimizer Stochastic Gradient Descent (SGD) dengan learning rate 1e-4, momentum 0.9, weight decay 1e-6, dan split ratio training testing 80/20. Dengan sistem ini pengolahan data untuk menghitung jumlah penangkapan ikan berdasarkan spesies akan lebih efisien. ......Almost half of the world depends on food that comes from the sea as the main source of protein. In the West and Central Pacific 60% of tuna fish are caught illegally, unreported and unregulated, threatening marine ecosystems, global fish supplies and local livelihoods. One possible solution is to use a security camera to capture images of ship activity. In this study a system will be created to classify the types of fish caught from the ship's security camera images. This system uses a transfer learning model that has been fine tuned and trained using the dataset provided by The Nature Conservancy. From this study, the best performance was obtained with an accuracy of 98.19% using the EfficientNetV2L model and the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 1e-4, momentum of 0.9, weight decay of 1e-6, and split ratio training testing of 80/20. With this system, data processing to calculate the amount of fish caught by species will be more efficient.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hilda Auliana
Abstrak :
Dalam dokumen Global Tuberculosis Report 2022, World Health Organization (WHO) melaporkan bahwa Indonesia tercatat sebagai negara dengan beban kasus tuberkulosis (TB) terbanyak kedua setelah India pada tahun 2021 lalu, di mana terhitung dari estimasi 969.000 kasus penderita TB di Indonesia, terdapat 525.765 (54,3%) kasus diantaranya belum ditemukan dan diobati, ini berpotensi menjadi sumber penularan serta meningkatan risiko transmisi komunal jika tidak mendapatkan penanganan segera. Menanggapi hal tersebut, dengan kemajuan teknologi kecerdasan buatan yang ada serta melalui peran pencitraan medis sebagai salah satu metode skrining pendukung, dikembangkan sebuah model pendeteksian berbasis arsitektur U-Net yang mampu secara otomatis mengenali dan melokalisasi area berbagai jenis kelainan indikator TB paru pada citra rontgen thorax. Selain melakukan tuning parameter, dibandingkan beberapa kasus segmentasi semantik multi-kelas, diantaranya terdiri atas 14 kelas kelainan spesifik, 5 kelas kelompok kelainan, dan 3 kelas kelompok kelainan, serta kasus segmentasi semantik biner. Hasil memperlihatkan bahwa pada kasus multi-kelas, semakin sedikit kelas yang digunakan, maka semakin besar nilai dice score yang didapat, yaitu mencapai 0,71. Sementara, jika dibandingkan dengan kasus segmentasi biner, meski dice score mengalami peningkatan, namun berdasarkan hasil visualisasi, kasus segmentasi multi-kelas kurang mampu dalam mengenali kondisi paru normal atau tidak memiliki kelainan. ......In the Global Tuberculosis Report 2022 document, the World Health Organization (WHO) reports that Indonesia is listed as the country with the second highest burden of tuberculosis (TB) cases after India in 2021, where from an estimated 969.000 cases of TB sufferers in India, there are 525.765 ( 54,3%) cases of which have not been found and treated, this has the potential to become a source of transmission and increase the risk of communal transmission if treatment is not immediately received. In response to this, with advances in existing artificial intelligence technology and through the role of medical imaging as a screening support method, a detection model based on the U-Net architecture was developed that can automatically recognize and localize areas of various types of pulmonary TB marker indicators on chest X-ray images. In addition to parameter tuning, several cases of multi-class semantic segmentation were compared, which consisted of 14 specific disorder classes, 5 class disorder clusters, and 3 class disorder clusters, as well as cases of binary semantic segmentation. The results reveal that in the multi-class case, the fewer classes used, the greater the dice score obtained, which is 0,71. Meanwhile, when compared with binary segmentation cases, even though the dice score has increased, based on visualization results, multi-class segmentation cases are less able to recognize normal lung conditions or have no abnormalities.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nidya Anifa
Abstrak :
Diagnosis COVID-19 dapat dilakukan dengan berbagai metode, salah satunya dengan interpretasi citra medis rongga dada menggunakan machine learning. Namun, metode ini memiliki memerlukan waktu dan biaya yang besar, tidak ada standar dalam pengambilan gambar citra medis, dan pelindungan privasi pada data pasien. Model yang dilatih dengan dataset publik tidak selalu dapat mempertahankan performanya. Diperlukan metode pengklasifikasi berbasis multicenter yang dapat memiliki performa optimal pada dataset yang berbeda-beda. Skenario pertama dengan melatih model menggunakan arsitektur VGG-19 dan ConvNeXt dengan gabungan seluruh data dan masing-masing data. Lalu dilakukan fine tuning terhadap model yang dilatih pada gabungan seluruh data. Skenario kedua dengan Unsupervised Domain Adaptation berbasis maximum mean discrepancy dengan data publik sebagai source domain dan data privat sebagai target domain. Metode transfer learning dengan fine-tuning model pada arsitektur VGG-19 menaikkan train accuracy pada data Github menjadi 95% serta menaikkan test accuracy pada data Github menjadi 93%, pada data Github menjadi 93%, pada data RSCM menjadi 72%, dan pada data RSUI menjadi 75%. Metode transfer learning dengan fine-tuning model pada arsitektur ConvNeXt menaikkan evaluation accuracy pada data RSCM menjadi 73%. Metode unsupervised domain adaptation (UDA) berbasis maximum mean discrepancy (MMD) memiliki akurasi sebesar 89% pada dataset privat sehingga merupakan metode yang paling baik. Berdasarkan GRAD-CAM, model sudah mampu mendeteksi bagian paru-paru dari citra X-Ray dalam memprediksi kelas yang sesuai. ......Diagnosis of COVID-19 can be done using various methods, one of which is by interpreting medical images of the chest using machine learning. However, this method requires a lot of time and money, there is no standard in taking medical images, and protecting patient data privacy. Models that are trained with public datasets do not always maintain their performance. A multicenter-based classification method is needed that can have optimal performance on different datasets. The first scenario is to train the model using the VGG-19 and ConvNeXt architecture by combining all data and each data. Then, the model trained using combined data is fine tuned. The second scenario uses Unsupervised Domain Adaptation based on maximum mean discrepancy with public data as the source domain and private data as the target domain. The transfer learning method with the fine-tuning model on the VGG-19 architecture increases train accuracy on Github data to 95% and increases test accuracy on Github data to 93%, on Github data to 93%, on RSCM data to 72%, and on data RSUI to 75%. The transfer learning method with the fine-tuning model on the ConvNeXt architecture increases the evaluation accuracy of RSCM data to 73%. The unsupervised domain adaptation (UDA) method based on maximum mean discrepancy (MMD) has an accuracy of 89% in private dataset making it the best method. Based on GRAD-CAM, the model has been able to detect parts of the lungs from X-Ray images in predicting the appropriate class.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jonathan Aurelius Faren
Abstrak :
Jakarta sebagai kota besar yang memiliki tingkat kepadatan yang tinggi pada saat jam-jam dan hari-hari kerja memiliki peraturan guna mengurangi kemacetan di jalan. Salah satu peraturannya adalah pemberlakukan plat nomor kendaraan ganjil genap sesuai dengan tanggal. Peraturan ini cukup efektif dalam mengurangi tingkat kemacetan di jalan-jalan protokol. Namun masih saja ada oknum-oknum yang melanggar peraturan ini dikarenakan kemampuan manusia yang terbatas sehingga tidak dapat selalu mengawasi plat nomor kendaraan secara maksimal. Dengan berkembangnya teknologi terutama di bidang computer vision masalah ini dapat dikurangi. Dengan menggunakan bantuan machine learning yaitu computer vision menggabungkan alat fisik yaitu kamera dengan komputer sehingga dapat mendeteksi dan membaca plat nomor pada kendaraan. Perkembangan teknologi membuat machine learning semakin berkembang sehingga proses melakukan deteksi dapat dilakukan dengan lebih cepat dan akurat. Untuk melakukan hal ini algoritma YOLOv7 dilatih untuk melakukan deteksi pada plat nomor kendaraan serta membacanya sehingga dapat diklasifikasian termasuk ganjil / genap sesuai dengan tanggal pendeteksian. Pada penelitian ini dilakukan pembangunan prototype sistem pendeteksi dan klasifikasi ini menggunakan machine learning dan computer vision untuk melakukan deteksi plat nomor pada kendaraan yang lewat di jalan-jalan protokol. Hasil dari penelitan ini adalah dengan menggunakan algoritma YOLOv7, model yang dihasilkan memiliki akurasi sebesar 86%, melakukan pembacaan plat nomor hasil deteksi dengan EeasyOCR memiliki tingkat kesalahan pembacaan per karakter 3.81% dan kesalahan pembacaan per kata sebesar 11.90%, sistem dapat melakukan deteksi dan pembacaan plat nomor secara real time dengan baik, melakukan identifikasi pada jenis tanggal (ganjil  genap) dan memberikan alert ketika ada plat nomor yang tidak sesuai ketentuan tanggal. ...... Jakarta as the big city and the capital of Indonesia that have high density rate in the work hours and days have a special rule to decrease the congestion rate in the road. One of the rules is the enforcement of odd even license plate rules that connect to the real time date. This rule is effective in decreasing the congestion rate in the major arterial roads. but there's still a loophole that makes people violate this rule, the human limited ability makes them can't always observe all the license plate. With the help of technology development in computer vision, can help to reduce the problem. Computer vision combines the video camera and computer to work side by side so it can read and detect the license plate number. Technology development also develops the computer vision ability so detection and recognition can be done with more accuracy and less time. To do this thing YOLOv7 algorithm trains a model to detect the license plate in a car and read the license plate so it can classify the license plate type (odd/even) and compare it with the research date type. This research build the prototype of detection and classifier system with machine learning and computer vision, to do the automatic odd /even license plate detection and recognition at the car in artery road. As the result of the research , the detection model made by YOLOv7 algorithm have a 86 % accuracy, and the character recognition with EasyOCR have a character error rate 3.81 %  and word error rate 11.90 % , the system prototype can run the detection and OCR in real time, the prototype can get the real time date and classified it as odd or even number, and give an alert when the detected license plate number violated the odd even rule.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Zufar Ashshiddiqqi
Abstrak :
Indonesia merupakan negara maritim terbesar di dunia dengan banyak sekali ikan yang hidup di perairan Indonesia Hal ini membuat sektor perikanan Indonesia memiliki banyak ancaman. Illegal, unreported, unregulated (IUU) fishing adalah salah satu permasalahan yang memiliki dampak yang cukup signifikan karena membuat kerugian yang cukup besar di sektor perikanan Indonesia. Untuk mencegah permasalahan tersebut, sudah banyak solusi yang diajukan, salah satunya adalah penerapan kuota untuk operasi penangkapan ikan serta pemasangan kamera pengawas, namun solusi tersebut belum memiliki dampak yang signifikan dalam mengurangi dan mencegah terjadinya IUU fishing. Oleh karena itu, penelitian ini dilakukan untuk mengembangkan sistem deteksi jenis ikan hasil tangkapan. Sistem dirancang menggunakan konsep object detection dan instance segmentation yang merupakan sebuah bidang dari machine learning, menggunakan toolbox MMDetection dengan algoritma Faster R-CNN dan GFL untuk metode object detection dan algoritma Mask R-CNN untuk metode instance segmentation. Dimana sistem tersebut merupakan model kecerdasan buatan yang dapat melakukan pendeteksian ikan untuk melakukan pengawasan terhadap jumlah ikan yang ditangkap oleh nelayan sehingga IUU fishing dapat berkurang secara signifikan. Sistem terbaik dari penelitian ini dihasilkan menggunakan model instance segmentation yang mendapatkan nilai mAP @50 0,758, besar F1-Score 0,761, dan membutuhkan waktu untuk pelatihan selama 7 jam 32 menit. Selain itu, model tersebut juga mendapatkan akurasi yang lebih baik sebanyak 20% dari perbandingan dengan model object detection. ......Indonesia, as the world's largest maritime country, is home to a vast variety of fish species in its waters. This reality poses numerous threats to Indonesia's fisheries sector. One significant challenge is illegal, unreported, and unregulated (IUU) fishing, which has considerable detrimental effects and causes substantial losses to the Indonesian fisheries industry. Several solutions have been proposed to address this problem, including the implementation of fishing quotas and the installation of surveillance cameras. However, these solutions have not yielded significant impacts in reducing and preventing IUU fishing. Hence, this research aims to develop a fish species detection system. The system is designed based on the concepts of object detection and instance segmentation, which are subfields of machine learning. The research utilizes the MMDetection toolbox with the Faster R-CNN and GFL algorithms for object detection, as well as the Mask R-CNN algorithm for instance segmentation. This artificial intelligence-based system enables the detection of captured fish to monitor the quantity of fish caught by fishermen, thereby significantly reducing IUU fishing. The research's best-performing system employs the instance segmentation model, achieving an mAP@50 score of 0.758, an F1-Score of 0.761, and requires a training time of 7 hours and 32 minutes. Moreover, this model also demonstrates a 20% improvement in accuracy compared to the object detection model.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5   >>