Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 141 dokumen yang sesuai dengan query
cover
Wahyu Ari Wibowo
"Teknologi Adsorbed Natural Gas (ANG) merupakan teknologi penyimpanan gas metana dalam keadaan teradsorpsi. Pada teknologi ini kapasitas penyimpanan gas metana dapat meningkat dibandingkan Compress Natural Gas dengan adanya karbon aktif. Penelitian ini bertujuan untuk mendapatkan karbon aktif berbasis tempurung kelapa sebagai adsorben penyimpanan gas metana dengan aktivasi kimia KOH dan aktivasi fisika 7500C dengan CO2. Hasil karbon aktif tempurung kelapa akan diuji kapasitas penyimpanan dan sebagai pembanding digunakan karbon aktif komersial. Parameter variasi yang digunakan adalah laju alir 10, 15, 20 slpm dengan tekanan batas 30 bar pada proses penyimpanan dalam kondisi dinamis. Peningkatan kapasitas penyimpanan gas metana melalui karbon aktif tempurung dan komersial adalah 94% dan 150% dibandingkan Compress Natural Gas pada tekanan 30 bar. Hasil terbaik didapat melalui laju alir 10 slpm pada tekanan 30 bar yaitu memiliki kapasitas penyimpanan 0,080 kg/kg dengan luas permukaan 953 m2/g dan karbon aktif komersial memiliki kapasitas 0,1 kg/kg dengan luas permukaan 1201 m2/g.

Technology Adsorbed Natural Gas (ANG) is a storage technology in condition adsorbed methane storage. In this technology methane storage capacity can be increased compared to Compress Natural Gas in the presence of activated carbon. The research aims to get coconut shell-based activated carbon as adsorbent methane storage with KOH chemical activation and physical activation with CO2 7500C. The results of coconut shell activated carbon would be test to storage capacity and as comparison commercial activated carbon used. Parameter variations in this research are flow rates of 10, 15, 20 slpm with a pressure limit 30 bar in the storage process in dynamic conditions. Increased methane storage capacity through coconut shell activated carbon and commercial are 94% and 150% compared Compress Natural Gas at 30 bar. Best results are obtained through a flow rate of 10 slpm at pressure of 30 bar which has a storage capacity of 0.080 kg/kg with a surface area of 953 m2/g and commercial activated carbon has a capacity of 0.1 kg/kg with a surface area of 1201 m2/g."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59295
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fathiya Karimah
"ABSTRAK
Ruang operasi merupakan salah satu sarana kesehatan yang krusial karena menjadi tempat pertolongan yang memerlukan penanganan penyakit yang lebih serius. Ketika membuat perancangan ruang operasi, kondisi udara yang akan terjadi harus diperhatikan agar ketika ruang nanti digunakan sistem ruang bersih pada ruang operasi ini bisa berfungsi dengan baik sehingga menyokong kegiatan medis yang sedang berlangsung di dalamnya. Perancang dapat mengecek kesesuaian ruang rancangan dengan standar yang telah ada dengan menggunakan perangkat lunak simulasi perancangan. Dengan adanya hasil uji simulasi ini, dapat diketahui kelayakan rancangan untuk membangun ruang operasi yang sesuai standardisasi. Hasil dari perhitungan data dan simulasi program menunjukkan nilai Pergantian Udara per Jam Air Change Hour, ACH sebesar 17, temperatur 220C, dan kecepatan udara 0,1 m/s. nilai ini sudah sesuai standar sehingga desain pada ruang Operating Theatre ini sudah layak untuk dibangun, tidak memerlukan perubahan dalam struktur bangunan maupun sistem tata udaranya.

ABSTRACT
This study aimed to determine whether Operating room is one of health facilities that has crucial role since it used to give medical help for some worse sickness and need further handling. When the operating room is being designed, there must be a concerned for the air condition that would be applied by the system in order that the cleanroom system at the operating room could be useful thus support the activity inside. Engineer could check compatibility between the recent design and the design simulation with a software. From the result of the design simulation, properness of the design to build an operating room could be known. The results of the data calculations and the program simulations show the value of Air Change Hour ACH is 17, the temperature of 220C, and the air velocity of 0.1 m s. This value is in accordance with the standard so that the design in the space Operating Theater is already feasible to be built, does not require changes in the structure of the building and its air system."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Nursya`bani
"Gas alam merupakan bahan bakar bersih yang lebih ramah lingkungan dibandingkan dengan batubara dan minyak bumi. Salah satu teknologi yang dapat digunakan untuk menyimpan gas alam adalah adsorbed natural gas (ANG). ANG memanfaatkan kemampuan adsorpsi material adsorben seperti karbon aktif untuk menyimpan gas alam. Karbon aktif dibuat dengan menggunakan cangkang kelapa sawit melalui tahapan karbonisasi dan aktivasi. Karbonisasi dilakukan pada suhu 400 oC dan dilanjutkan dengan tahapan aktivasi untuk membuka pori. Aktivasi kimia dilakukan dengan larutan H3PO4, sementara aktivasi fisika dilakukan dengan menggunakan gas N2. Yield yang didapatkan pada penelitian ini adalah sebesar 27,56%. Untuk meningkatkan kemampuan adsorpsi, dilakukan juga impregnasi menggunakan MgO yang divariasikan pada konsentrasi 0,5% b/b, 1% b/b, dan 2% b/b. Karbon aktif dengan hasil terbaik adalah karbon aktif termodifikasi MgO 1% b/b dengan luas permukaan sebesar 1604,00 m2/g. Karbon aktif yang dihasilkan diuji kapasitasnya dalam menyimpan gas alam. Kapasitas adsorpsi gas alam terbesar didapatkan oleh karbon aktif termodifikasi MgO 1% b/b pada suhu 28 oC dan tekanan 9 bar yang mampu mencapai 0,027 kg/kg.

Natural gas is a cleaner fuel that is more environmentally friendly than coal and oil. One of the technologies that can be used to store natural gas is adsorbed natural gas (ANG). ANG utilizes the adsorption ability of adsorbent materials such as activated carbon to store natural gas. Activated carbon is made using palm shells through the stages of carbonization and activation. The carbonization was carried out at 400 oC and followed by an activation step to open the pores. Chemical activation was carried out with H3PO4 solution, while physical activation was carried out using N2 gas. Yield obtained from this experiment is 27.56%. To increase adsorption ability, impregnation was also carried out using MgO with variation of concentration of 0.5% w/w, 1% w/w, and 2% w/w. Activated carbon with the best results was activated carbon with 1% w/w MgO modification with a surface area of 1604.00 m2/g. The activated carbon produced then tested for its capacity to store natural gas. The largest natural gas adsorption capacity was obtained by activated carbon modified with 1% MgO w/w at temperature 28 oC and pressure 9 bar which was able to reach 0.027 kg/kg.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rano Andrey
"Untuk mencapai sasaran yang optimal dalam pemanfaatan energi panas matahan, perlu dilakukan pengujian dan anahsa lebih lanjut terhadap efisiensi dan performa yang dihasilkan oleh flat plate solar thermal collector dan juga parabolic solar concentrator Pada tugas akhir 1111 akan dibahas proses pengujian terhadap rangkaian kolektor pelat datar dan konsentrator parabolik pada kondisi pengoperasian di daerah Depok untuk dihhat bagaimana karakteristik yang dihasilkan kedua alat tersebut.
Pengujian dilakukan dengan menggunakan fluida air yang dialirkan melewati rangkaian 8 kolektor pelat datar dan dilanjutkan dengan pemanasan di 2 konsentrator parabolik Parameter yang dikur adalah temperatur air serta ambient intensitas radiasi matahan dan laju ahran massa Dan sini dapat dihitung karakteristik efisiensi dan juga performa alat up pada kondisi pengoperasian yang bervanasi.
Hasil akhir pengujian menunjukkan bahwa efisiensi maksimum untuk kolektor pelat dan konsentrator parabolik berturut turut adalah 43 4% 52 7% dan 30 4% Selain itu juga diperoleh mlai faktor pemindahan kalor dikah dengan koefisien kerugian kalor (FRUL) adalah 3 38 7 49 W/m2K untuk kolektor pelat datar dan 2 69 W/m2K untuk konsentrator parabolik.

In order to obtain the objective of optimal use of solar thermal collector it is necessary to do testing and analyzing of efficiency and performance result of flat plate solar thermal collector and parabolic solar concentrator. This final project will discuss the process of testing flat plat collectors and parabolic concentrators through operational condition in Depok then observe the characteristic output of both heater.
Experiments be done using water as fluid which flow through 8 connecting flat plat collectors and 2 parabolic concentrators Parameter to be measured is water and ambient temperatures solar radiation intensity and mass flow rate Further more it can be calculated the efficiency characteristic and performance of heater in variation of operational condition.
Final results shown that maximum efficiency of flat plate collector and parabolic concentrator are 43 4% 52 7% dan 30 4% respectively Else it can be calculated that value of heat removal factor multiply by heat loss coefficient (FRUL) are 3 38 7 49 W/m2K for flat plate collector and 2 69 W/m2K for parabolic concentrator.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Teddy Hendra Zulkarnain
"Untuk mencapai sasaran yang optimal dalam pemanfaatan energi panas matahari, perlu dilakukan pengujian dan analisis lebih lanjut terhadap performa yang dihasilkan oleh kombinasi kolektor pelat datar dan juga konsentrator parabolik. Pada tugas akhir ini, akan dibahas proses pengujian terhadap rangkaian tersebut dilihat bagaimana karakteristik dari heat removal factor dan overall heat loss coefficient yang dihasilkan alat tersebut. Pengujian dilakukan dengan menggunakan fluida air yang dialirkan melewati rangkaian 8 kolektor pelat datar dan dilanjutkan dengan pemanasan di konsentrator parabolik. Parameter yang diukur adalah temperatur air serta temperatur ambien, intensitas radiasi matahari, dan laju aliran massa. Dari perhitungan didapat nilai karakteristik overall heat loss coefficient untuk 2 rangkaian seri meningkat tiap kolektornya mulai dari 9.27 W/mK hingga 9.51 2 W/mK begitu pula dengan rangkaian paralel mulai dari 9.38 W/mK hingga 9.6 2 W/mK. Sedangkan untuk nilai heat removal factor rangkaian seri menurun dari 0.825 ke 0.821 sedangkan pada rangkaian parallel bervariasi mulai dari 0.682 hingga 0.779 tergantung dari laju aliran masa yang mengalir di tiap kolektor. Untuk konsentrator parabolik memiliki heat loss coefficient 23.55 W/mK dan heat removal factor sebesar 0.81.

To achieve optimal utilization of solar thermal energy, need to do further testing and analysis of the performance generated by a combination of flat plate collector and parabolic concentrator. In this thesis, will be discussed about the testing process of that device to see how the characteristics of the heat removal factor and overall heat loss coefficient resulted by that device. Tests carried out using water that flowed through the fluid circuit of 8 flat plate collectors and followed by re¬heating on parabolic concentrator. Parameters measured in this test are fluid temperature and ambient temperature, solar radiation intensity, and mass flow rate. From the calculation, obtained overall heat loss coefficient for the series circuit 2 increases each collector from 9.27 until 9.51 W/mK as well as the parallel circuit 2 starting from 9.38 up to 9.6 W/mK. Meanwhile, the value of a series circuit heat removal factor decreased from 0.825 to 0.821 while in the parallel series ranging from 0.682 to 0.779 depends on mass flow rate which flows through each collectors. For parabolic concentrators, they have a heat loss coefficient of 23.55 W/mK and heat removal factor of 0.81."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yusri Fakhrizal
"Skripsi ini membahas mengenai rancan bangun mesin refrigerasi tanpa menggunakan refrigerant, dimana refrigerant diganti menggunakan LiBR (Lithium Bromida). Fluida kerja campuran seperti LiBr+H2O merupakan zat pendingin yang ramah lingkungan dan sangat hemat energi. Kedua jenis refrigerant tersebut digunakan pada mesin refrigerasi siklus absorpsi, baik untuk kebutuhan kenyamanan ruangan maupun kebutuhan proses industri. Riset yang dilakukan bertujuan untuk mengetahui unjuk kerja sebuah mesin refrigerasi siklus absorpsi, berpendingin udara yang menggunakan campuran larutan dan LiBr+H2O+additive sebagai fluida kerja. Manfaat dari hasil riset ini dapat digunakan sebagai salah satu upaya alternatif untuk mendukung program penghematan energi pada sektor residensial dan komersial yang telah ditetapkan pemerintah. Selain itu, hasil riset ini secara langsung dapat membantu pemerintah dalam implementasi program pembatasan penggunaan refrigerant yang berpotensi menimbulkan pemanasan global dan penipisan lapisan ozon.

This thesis discusses the design and construction of refrigeration machine without using refrigerant, where the refrigerant is replaced using LiBR (Lithium Bromide). Working fluid mixtures such as LiBr + H2O is an environmentally friendly refrigerant and highly energy efficient. Both types of refrigerants used in absorption cycle refrigeration machines, either for the comfort of the room as well as the needs of the industry. Research conducted aimed to determine the performance of an absorption cycle refrigeration machine, air-cooled using a mixture of solution and LiBr + H2O + additive as a working fluid. The benefits of this research can be used as part of efforts to support alternative programs for energy conservation in residential and commercial sectors that have been set by the government. In addition, the results of this research directly to assist the government in implementing programs that have the potential restrictions on the use of refrigerant causing global warming and ozone depletion."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1882
UI - Skripsi Open  Universitas Indonesia Library
cover
Stefanno Widy Yunior
"ABSTRAK
Penyimpanan hidrogen pada media padat adalah yang teraman dan termurah dibanding metode penyimpanan dengan hidrogen cair atau hidrogen bertekanan tinggi pada tabung. Karbon aktif merupakan media padat penyimpanan hidrogen yang murah, mudah didapatkan, dan memiliki kemampuan penyerapan yang baik karena adanya pori-pori pada permukaannya. Pada penelitian ini diuji efek dari proses mekanokimia dan peletisasi terhadap kemampuan penyerapan H2 pada karbon aktif arang batok kelapa. Proses penggilingan menggunakan planetary ball mill (PBM) selama 30 jam, proses mekanokimia menggunakan activating agent KOH dengan rasio karbon dan KOH sebesar 1:1 kemudian diperlakukan mekanik pada PBM selama 1 jam, lalu proses peletisasi dilakukan dengan binder. Sampel mengalami penurunan luas permukaan setelah proses mekanokimia dan peletisasi, dari 393,5 m2/g menjadi 126,2 m2/g dan diameter rata-rata pori naik dari 2,5 nm menjadi 2,7 nm. Kemampuan adsorpsi H2 pada sampel juga mengalami penurunan setelah perlakuan mekanokimia, dan peletisasi. Kapasitas adsorpsi H2 pada sampel awal yaitu 0.204 wt% (4000 kPa | -5oC) dan 0.197 wt% (4000 kPa | 25oC), sedangkan kapasitas adsorpsi H2 pada sampel setelah 3 perlakuan (penggilingan, mekanokimia, dan peletisasi) yaitu 0.194 wt% (4000 kPa | -5oC) dan 0.179 wt% (4000 kPa | 25oC).

ABSTRACT
Hydrogen storage at solid media is more secure and cheaper than hydrogen storage in a tank (liquid phase or hydrogen compression). Activated carbon can be the best for the solid media because of cheap, good availability, and good adsorption capacity because of many pores on its surface. In this research, it was examined the effect from mechanochemical process and pelletizing to H2 volume adsorption of coconut charcoal-based activated carbon. Planetary ball mill (PBM) was used in 30 hours, with addition of KOH as activating agent with ratio of carbon:KOH was 1:1, then treated mechanically by PBM in 1 hour, further more pelletizing was done by added binder. Sample‟s surface area decreased after mechanochemical process and pelletizing process, from 393,5 m2/g to 126,2 m2/g, with average pore diameter increase from 2,5 nm to 2,7 nm. Adsorption capacity H2 decreased after mechanochemical and pelletizing. H2 Adsorption capacity for sample before treatment (granule sample) was 0.204 wt% (4000 kPa | -5oC) and 0.197 wt% (4000 kPa | 25oC), while H2 adsorption capacity for sample after mechanochemical, and pelletizing was 0.194 wt% (4000 kPa | -5oC) and 0. 179 wt% (4000 kPa | 25oC)."
Fakultas Teknik Universitas Indonesia, 2012
S42192
UI - Skripsi Open  Universitas Indonesia Library
cover
Hutabarat, Gidion Maruli Tua Diondihon
"Tempurung kelapa awalnya merupakan produk yang jarang digunakan, namun kini tempurung kelapa sudah berkembang menjadi barang komoditas yang bersaing di pasar international. Salah satu produk turunan dari tempurung kelapa adalah briket. Tercatat pada 2019 indonesia sudah mengekspor 467.050 Ton briket kelapa ke seluruh dunia dengan nilai ekspor USD 151,9 juta tumbuh 4,69% YoY 2018 . Dengan meningkatnya produksi briket, perlu dilakukan evaluasi terhadap dampak lingkungan dari industri briket arang kelapa. Disamping produk jadi yang menghasilkan emisi ketika digunakan, proses pengolahan dan produksi briket sendiri juga menghasilkan emisi. Emisi tersebut berasal dari proses awal yaitu transportasi bahan baku, proses produksi hingga proses pengemasan dan pengiriman barang jadi. Pada proses distribusi, emisi akan dihasilkan dari mesin kendaraan. Pada proses produksi emisi akan berasal dari penggunaan motor listrik dan mesin oven serta penggunaan alat listrik pada proses pengemasan.Dilakukan penelitian dengan menggunakan Life Cycle Assessment (LCA) untuk mengukur dampak lingkungannya, penelitian ini menilai dampak lingkungan yang dihasilkan dari daur hidup briket arang kelapa, kemudian dilakukan improvement. Penyumbang terbesar terhadap dampak lingkungan terbesar ada pada tahap drying, dimana proses drying berkontribusi rata rata sebesar 52% dari keseluruhan proses produksi diikuti proses mixing, blending dan molding dengan persentase 27,7%. Dari ketiga raw material, dampak terbesar dihasilkan oleh arang kelapa berkontribusi sebesar 55,3% diikuti tapioka sebesar 44,68% dan air 0,01%. Dan hasil improvement menunjukan hasil positif dari setiap aspek yang terdampak diperoleh hasil bahwa skenario improvement lebih baik dari skenario existing dengan melakukan perubahan variabel jarak pengiriman raw material serta durasi mixing akhirnya mencatatkan emisi dampak lingkungan yang lebih rendah.

Coconut shells, once rarely utilized, have now become a valuable international commodity, particularly as raw material for briquettes. In 2019, Indonesia exported 467,050 tons of coconut briquettes valued at USD 151.9 million, marking a 4.69% increase from 2018. This growth was supported by 350 briquette producers in Indonesia. Coconut briquettes are used in various countries, including those in Asia, the Middle East, and Europe, for cooking and as hookah fuel. Additionally, coconut charcoal can be used as activated carbon. Coconut briquettes are considered a new and renewable energy source (NRE) due to their high heat output and low emissions. However, their production process also generates CO2 emissions that negatively impact the environment. The research was conducted at PT. ABC, located in Bogor, using Life Cycle Assessment (LCA) to measure its environmental impact. This study assesses the environmental impacts generated from the life cycle of coconut charcoal briquettes and subsequently implements improvements. The results of these improvements show positive outcomes in all affected aspects, indicating that the improvement scenario is better than the existing scenario. Changes in the variables such as the distance of raw material transportation and mixing duration resulted in lower environmental impact emissions were recorded."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stepanus Wisnu Driyaskoro
"Gas heater adalah alat penukar kalor yang digunakan untuk memanaskan gas alam menggunakan air yang telah dipanaskan pada waste heat water heater. Gas alam ini akan digunakan sebagai bahan bakar Gas Turbin Generator. Dalam merancang gas heater digunakan metode beda suhu rata-rata logaritmik (LMTD) untuk mencari luas area perpindahan panas.
Hasil yang diperoleh berdasarkan perhitungan didapatkan bahwa luas perpindahan panas adalah sebesar 1.062,94 m2. Spesifikasi konstruksi dari alat penukar kalor yaitu pipa carbon steel sch 80 dengan ukuran pipa nominal 1 inch dengan panjang 4 m dan jumlah pipa sebanyak 2.532 buah.

Gas heater is a heat exchanger that used to heat natural gas using water that has been heated in the waste heat water heater. Natural gas will be used as fuel Gas Turbine Generator. In designing a gas heater use methods of log mean temperature different (LMTD) to determine the range of area of the heat transfer.
The result according to the calculation show that the heat transfer area is about 1.062,94m2. The construction specification of a heat exchanger is carbon steel sch 80 tube with nominal pipe size 1 inch and length 4 m with total 2.532 tube.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47610
UI - Skripsi Membership  Universitas Indonesia Library
cover
Angga Panji Satria Pratama
"Chiller merupakan mesin refrigerasi non – direct expansion yang biasa dipakai untuk beban pendinginan yang besar. Media pendinginnya yaitu berupa air atau udara yang mengalir bersirkulasi melewati heat exchanger.
Air-cooled chiller yang memakai kompresor dari Copeland dengan berdaya 3 PK ingin digunakan untuk merancang sebuah kondenser. Dari hasil perhitungan diperoleh kapasitas kondenser sebesar 10,945 kW dengan temperatur masuk kondenser 49-55 ˚C dan temperatur keluar kondenser 47-53 ˚C. Daya fan yang bervariasi harus diberikan dengan diameter hub berbeda – beda. Daya terkecil yaitu 716 Watt untuk tipe A dan 1925 Watt untuk tipe E.

Chiller is a refrigeration machine non-direct expansion that is usually used for large cooling loads. The cooling medium is a water or air flowing through the heat exchanger.
Air-cooled chiller that used compressor from Copeland with power 3 PK wants to use to design a condenser. From the calculation, the condenser capacity of 10,945 kW with incoming condenser temperature 49-55 ˚C and condenser exit temperature 47-53 ˚C. Varying fan power should be given to the hub diameter difference. The smallest power 716 Watt for type A and the largest power 1925 Watt for type E.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47201
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>