Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Aldinisa Rahma Sabillah
"ABSTRAK
Dalam penelitian ini, dibahas penerapan Algoritma Winnowing dalam Pengembangan Sistem Penilaian Pengucapan Bahasa Jepang (SIPENILAI). Algoritma Winnowing adalah sebuah algoritma berbasis fingerprint yang digunakan untuk menilai tingkat kemiripan dari dua buah teks. Masukkan dari sistem ini berupa suara yang kemudian diubah menjadi teks dengan speech recognition Julius. Pertama, dokumen yang telah ditangkap oleh Julius akan diproses untuk mendapatkan nilai hash masing-masing. Setiap kata memiliki nilai hash yang berbeda, digunakan algoritma Rolling Hash untuk mencari nilai hash tersebut. Dari kumpulan nilai hash dipilih nilai hash minimum sebagai fingerprint. Kedua dokumen teks yang telah diwakili fingerprint, akan dibandingkan kesamaannya menggunakan Cosine Similarity. Akurasi yang didapatkan sistem mencapai 90.33%.

ABSTRACT
In this research, discussed the application of the Counteract Algorithm in the Development of Japanese Language Assessment System (SIPENILAI). Counteracting Algorithm is a fingerprint-based algorithm used to assess the degree of similarity of two texts. Julius. First, documents that have been taken by Julius will be processed to get their respective hash values. Each word has a different hash value, used the Rolling Hash algorithm to find the hash value. From the collection of hash values the minimum hash value is chosen as the fingerprint. The two text documents that have the fingerprint represented, will be compared offered using Cosine Similarity. The accuracy obtained by system is 90.33%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ghulam Izzul Fuad
"Teknologi lokalisasi dalam ruangan berkembang pesat karena keterbatasan GPS di lingkungan tertutup. WiFi fingerprinting menjadi solusi menjanjikan karena ketersediaannya yang luas dan biaya rendah. Penelitian ini bertujuan menentukan posisi access point ilegal di dalam ruangan menggunakan infrastruktur WiFi Aruba dan klasifikasi berbasis machine learning. Pendekatan ini melibatkan dua fase utama. Pertama, fase konstruksi fingerprint database di mana data kekuatan sinyal WiFi dikumpulkan dari berbagai lokasi di dalam ruangan dan disimpan dalam database. Kedua, fase klasifikasi berbasis machine learning yang menggunakan algoritma seperti K-Nearest Neighbor (KNN), Random Forest (RF), Extreme Gradient Boosting (XGBoost), dan Artificial Neural Network (ANN) untuk mengklasifikasikan lokasi access point ilegal berdasarkan fingerprint received strength signal (RSS). Model dievaluasi menggunakan metric accuracy dan f1-score. Hasil eksperimen menunjukkan bahwa untuk dataset NTUST, model yang paling sesuai adalah model dengan algoritma XGBoost dengan label jenis satu, tanpa augmentasi, dan dengan hyperparameter tuning yang memiliki skor accuracy sebesar 0.793 dan skor weighted average f1-score sebesar 0.792. Untuk dataset UI, model yang paling sesuai adalah model dengan algoritma XGBoost dengan label jenis satu, dengan augmentasi, dan tanpa hyperparameter tuning yang memiliki skor accuracy sebesar 0.591 dan skor weighted average f1-score sebesar 0.582.

Indoor localization technology is rapidly developing due to the limitations of GPS in enclosed environments. WiFi fingerprinting has become a promising solution due to its wide availability and low cost. This study aims to determine the position of illegal access points indoors using Aruba WiFi infrastructure and machine learning-based classification. This approach involves two main phases. First, the fingerprint database construction phase, where WiFi signal strength data is collected from various locations indoors and stored in a database. Second, the machine learning-based classification phase, which uses algorithms such as K-Nearest Neighbor (KNN), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Artificial Neural Network (ANN) to classify the location of illegal access points based on received strength signal (RSS) fingerprints. The model is evaluated using accuracy and f1-score metrics. Experimental results show that for the NTUST dataset, the most suitable model is the one using the XGBoost algorithm with label type one, without augmentation, and with hyperparameter tuning, achieving an accuracy score of 0.793 and a weighted average f1-score of 0.792. For the UI dataset, the most suitable model is the one using the XGBoost algorithm with label type one, with augmentation, and without hyperparameter tuning, achieving an accuracy score of 0.591 and a weighted average f1-score of 0.582."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Raihan Azhari
"Tanda tangan memiliki peran penting dalam konteks sosial, ekonomi, pendidikan. Awalnya, tanda tangan hanya berbentuk tulisan di atas kertas, namun seiring perkembangan tekonlogi digital, tanda tangan online mulai digunakan dan telah diakui secara hukum. Meskipun tanda tangan telah menjadi komponen yang penting, namun kasus pemalsuan tanda tangan masih tinggi. Beragam metode telah dilakukan untuk menyelesaikan permasalahan tersebut, mulai dari metode tradisional hingga penggunaan teknologi. Penelitian ini bertujuan untuk mengembangkan sistem verifikasi keaslian tanda tangan melalui metode analisis time series dan arsitektur model Siamese Recurrent Neural Network yang efisien, memiliki akurasi yang tinggi, serta bersifat writer independent. Dari pengujian yang dilakukan, model yang dilatih menggunakan GRU (Gate Recurrent Unit) yang diimplementasikan dalam arsitektur Siamese RNN merupakan model paling optimal dengan tingkat akurasi pengujian 81.02%, durasi pelatihan selama 680 sekon, serta ukuran model sebesar 37.996 Mb. Data yang digunakan untuk pelatihan model ini didapatkan dengan menggunakan metode pemotongan (truncating) sinyal time series sehingga memiliki panjang 1116 data dan tanpa melakukan proses alignment menggunakan algoritma Dynamic Time Warping. Meskpun demikian, model yang menggunakan Bidirectional LSTM yang dilatih dengan data time series sepanjang 3489 data memiliki akurasi pengujian tertinggi sebesar 85.16%. Namun, model tersebut memiliki durasi pelatihan yang terlama yaitu sebesar 2431.2 sekon dan ukuran model terbesar yaitu 630 Mb.

Handwriting signature has important role at social, economic, and education context. Initially, handwriting signature only write in the paper. However, with the development of digital technology, online handwriting start to be used and has gained legal recognition in law. Although online handwriting signature has become important, there is still many cases of forgery handwriting signature. Various method has already implemented to solve this problem, start from traditional method until technology utilization. This research aims to develop system for handwriting signature authentication verification using time series analysis and Siamese Recurrent Neural Network model architecture that is efficient, highly accurate, and writer-independent. Based on experiments conducted in this research, the model trained using a GRU (Gate Recurrent Unit) implemented in Siamese RNN is the most optimal model generates 81.02% accuracy score, training time of 680 second, and memory size of 37.996 Mb. The data used for training this model was generated from time series signal truncation method resulting time series with data sequence length of 1116, without implementing alignment using Dynamic Time Warping algorithm. However the model utilizing Bidirectional LSTM trained with time series data sequence length of 3489 generates the highest accuracy score of 85.16%. But this model also has longest training time of 2431.2 second and largest memory size of 630 Mb."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salma Dewi Taufiqoh
"Penelitian ini bertujuan untuk mengembangkan model deteksi penyakit kulit pada hewan peliharaan menggunakan image processing dan Deep Learning. Model ini dirancang untuk mendeteksi tiga jenis penyakit kulit yang umum, yaitu Ringworm, Scabies, dan Earmite, dengan memanfaatkan gambar yang diambil menggunakan kamera ponsel. Model ini menggabungkan teknik image processing, seperti CLAHE, filter Gaussian, dan segmentasi HSV, dengan model CNN. Evaluasi model dilakukan menggunakan metrik Accuracy, Precision, Recall, dan F1-score. Pada penelitian ini digunakan dua model untuk mendeteksi penyakit yang berbeda. Hasil penelitian menunjukkan bahwa untuk model 1, yang melakukan klasifikasi multi-kelas, nilai metrik validasi Akurasi mencapai 83%, F1-score mencapai 82%, Precision mencapai 89%, dan Recall mencapai 83%. Sedangkan untuk hasil model 2, yang melakukan klasifikasi biner, nilai akurasi mencapai 100%, F1-score mencapai 100%, Precision mencapai 100%, dan Recall mencapai 100%. Model ini juga menunjukkan kinerja yang lebih baik dibandingkan dengan model transfer learning ResNet-50 dan VGG16.

This research aims to develop a skin disease detection model for pets using image processing and Deep Learning . The model is designed to detect three common skin diseases, namely Ringworm, Scabies, and Earmite, using images captured by mobile phone cameras. The model combines image processing techniques, such as CLAHE, Gaussian filter, and HSV segmentation, with a CNN model. Model evaluation is performed using the Accuracy, Precision, Recall, and F1-score metrics. In this study, two models were used to detect different diseases. The research results show that for model 1, which performs multi-class classification, the validation metric value of Accuracy reaches 83%, F1-score reaches 82%, Precision reaches 89%, and Recall reaches 83%. Meanwhile, for the results of model 2, which performs binary classification, the accuracy value reaches 100%, F1-score reaches 100%, Precision reaches 100%, and Recall reaches 100%. This model also shows better performance compared to the ResNet-50 and VGG16 transfer learning models."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maulana Nurhendronoto
"Emosi adalah perasaan yang muncul dalam diri seseorang sebagai respon dari situasi tertentu. Perasan ini dapat memengaruhi pikiran, perilaku, dan persepsi seseorang terhadap suatu peristiwa. Klasifikasi emosi adalah bagian dari analisis sentimen yang bertujuan untuk menganalisis dan memperoleh emosi dari suatu data. Penelitian klasifikasi emosi berbasis teks perlu dilakukan karena dapat diimplementasikan pada berbagai bidang, seperti kesehatan dan pendidikan. Bahasa Indonesia menduduki peringkat 11 bahasa dengan penutur terbanyak di dunia dengan 200 juta penutur. Namun, penelitian klasifikasi emosi berbasis teks bahasa Indonesia masih sedikit dilakukan. Algoritma machine learning dapat digunakan untuk mengatasi berbagai tantangan dalam penelitian klasifikasi emosi seperti memahami emosi dan menganalisis emosi dari data yang tidak terstruktur. Penelitian ini berfokus pada pengembangan model machine learning dengan teknik convolutional neural network (CNN), long short-term memory (LSTM), dan bidirectional encoder representation from transformer (BERT). Berdasarkan pengujian yang dilakukan, metode convolutional neural network (CNN) mendapatkan F1 score sebesar 84,2%, metode long short term memory mendapatkan F1 score sebesar 82%, metode BERT en uncased mendapatkan F1 score sebesar 22%, dan metode BERT multi cased mendapatkan F1 score sebesar 32%. Hasil pengujian ini menandakan metode CNN merupakan metode dengan hasil pengujian terbaik dan BERT en uncased merupakan metode dengan hasil pengujian terburuk dibanding ketiga metode lainnya.

Emotions are feelings that arise within a person in response to a particular situation. These feelings can affect a person's thoughts, behavior, and perception of an event. Emotion classification is a part of sentiment analysis that aims to analyze and derive emotions from data. Text-based emotion classification research needs to be done because it can be implemented in various fields, such as health and education. Indonesian is ranked the 11th most spoken language in the world with 200 million speakers. However, there is still little research on Indonesian text-based emotion classification. Machine learning algorithms can be used to overcome various challenges in emotion classification research such as understanding emotions and analyzing emotions from unstructured data. This research focuses on developing machine learning models with convolutional neural network (CNN), long short-term memory (LSTM), and bidirectional encoder representation from transformer (BERT) techniques. Based on the tests conducted, the convolutional neural network (CNN) method gets an F1 score of 84,2%, the long short term memroy method gets an F1 score of 82%, the BERT en uncased method gets an F1 score of 22%, and the BERT multi cased method gets an F1 score of 32%. These results indicate that the CNN is the bets method while the BERT en uncased is the worst method compared to the three other methods."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library