Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Andrew Theodore Tjondrowidjojo
Abstrak :
Kabut merupakan fenomena atmosfer di mana asap, debu dan partikel kering lainnya berada di atmosfer. Kabut ini tentunya dapat memunculkan efek blur dan buram pada citra sehingga dapat mengurangi informasi yang terkandung di dalamnya. Hal ini dapat menyebabkan penurunan performa dari permasalahan pembelajaran mesin, seperti identifikasi dan klasifikasi. Image dehazing merupakan suatu proses yang bertujuan untuk memulihkan gambar yang jelas dari gambar yang rusak oleh kabut atau asap. Terdapat berbagai metode image dehazing yang telah dikembangkan, baik yang berbasiskan pixel intensity dan deep learning. Salah satu metode deep learning yang telah dikembangkan sebelumnya untuk image dehazing adalah Mod PDR-Net. Pada penelitian ini, penulis mengajukan suatu deep network untuk image dehazing baru dengan menggunakan Mod PDR-Net di dalam suatu Conditional Generative Adversarial Network. Data yang digunakan dalam penelitian ini adalah dataset standar citra berkabut luar ruangan. Untuk mengetahui kualitas dari hasil image dehazing yang didapat, penulis membandingkan hasil metode usulan dengan Mod PDR-Net original dan didapatkan bahwa metode usulan memiliki hasil yang lebih baik dibandingkan dengan Mod PDR-Net berdasarkan metrik yang digunakan, yaitu SSIM, RMSE, Delta E, dan BRISQUE dengan nilai berturut-turut sebesar 0.785, 0.109, 9.750. dan 28.375. ......Haze is an atmospheric phenomenon where smoke, dust, and other dry particles are present in the atmosphere. Haze can create blurring effects in captured images, resulting in reduced information contained in the image. This can lead to performance degradation from machine learning problems, such as identification and classification. Image dehazing is a process that aims to recover a clear image from a hazy image. Various image dehazing methods have been developed, both based on the pixel intensity and deep learning. One of the deep learning methods that has been previously developed for image dehazing is Mod PDR-Net. In this study, the author proposes a deep network for image dehazing by using Mod PDR-Net in a Conditional Generative Adversarial Network. The data used in this study consists of a standard dataset of outdoor hazy images. In order to determine the quality of the obtained image dehazing results, the author compared the result of the proposed method with the original Mod PDR-Net and found that the proposed method has better results than the Mod PDR-Net based on the metric used, namely SSIM, RMSE, !E, and BRISQUE with values respectively 0.785, 0.109, 9.750. and 28.375.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tatag Aziz Prawiro
Abstrak :
Normalisasi teks merupakan task pada NLP yang dapat digunakan untuk meningkatkan performa dari aplikasi-aplikasi NLP lain. Penelitian tentang normalisasi teks pada bahasa Indonesia masih jarang dan kebanyakan masih hanya menormalisasi pada tingkat token. Penelitian ini bertujuan untuk mengevaluasi pembangunan model normalisasi dengan menggunakan algoritma statistical machine translation (SMT). Isu dari pendekatan machine translation dalam penyelesaian task normalisasi teks adalah butuhnya data yang relative banyak. Penelitian ini juga melihat bagaimana pengaruh dari pemelajaran semi-supervised dengan cara menggunakan pseudo-data dalam pembangunan model normalisasi teks dengan algoritma statistical machine translation. Model SMT memiliki performa yang cukup baik pada data tanpa tanda baca, namun memiliki performa yang buruk pada data bertanda baca karena banyaknya noise. Pendekatan semi-supervised menurunkan performa SMT secara keseluruhan, namun, pada jenis data tidak bertanda baca penurunan relatif tidak signifikan. ......Text normalization is a task in NLP which can be used to improve the performance of other NLP applications. Research on text normalization in Indonesian language is still rare and most only normalize at the token level. This study attempts to improve the development of the normalization model by using the statistical machine translation (SMT) algorithm. The issue in building a good performing text normalization model using the machine translation approach is the relatively large data needs. This research also looks at how using semi-supervised learning by using pseudo-data as training data in SMT approach affects text normalization performance. The SMT model has a fairly good performance on data without punctuation, but has poor performance on data with a punctuation due to the amount of noise. The semi-supervised approach reduces the overall performance of the SMT model, but the reduction in performance is relatively insignificant on data without punctuation.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Inigo Ramli
Abstrak :
Model bahasa dapat mempelajari struktur suatu bahasa manusia menggunakan korpus yang tidak terstruktur. Namun, model bahasa secara umum belum dapat mempelajari pengetahuan faktual yang direpresentasikan oleh knowledge graph. Terdapat beberapa usaha untuk membuat model bahasa yang dapat mempelajari pengetahuan faktual seperti KEPLER. Sayangnya, belum terdapat penelitian yang komprehensif mengenai integrasi pengetahuan faktual terhadap pelatihan model bahasa Indonesia. Penelitian ini mengajukan model bahasa Indonesia baru bernama IndoKEPLER yang melatih model bahasa Indonesia yang sudah ada dengan korpus Wikipedia Bahasa Indonesia dan memanfaatkan pengetahuan faktual dari Wikidata. Selain itu, penelitian ini juga mengajukan metode knowledge probing baru untuk menguji pemahaman faktual suatu model bahasa Indonesia. Hasil eksperimen penelitian ini menunjukkan bahwa pelatihan model IndoKEPLER dapat meningkatkan pemahaman faktual suatu model bahasa Indonesia. ......Pretrained language models have the ability to learn the structural representation of a natural language by processing unstructured textual data. However, the current language model design lacks the ability to learn factual knowledge from knowledge graphs. Several attempts have been made to address this issue, such as the development of KEPLER. Unfortunately, such knowledge enhanced language model is not yet available for the Indonesian language. In this experiment, we propose IndoKEPLER: a pretrained language model trained using Wikipedia Bahasa Indonesia and Wikidata. We also create a new knowledge probing benchmark named IndoLAMA to test the ability of a language model to recall factual knowledge. This experiment shows that IndoKEPLER has a higher ability to recall factual knowledge compared to the text encoder it’s based on.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zafir Rasyidi Taufik
Abstrak :
Coronavirus Disease 2019 (COVID-19) merupakan sebuah penyakit yang disebabkan oleh novel coronavirus SARS-CoV-2. Penyakit yang berasal dari Provinsi Hubei di China ini sudah menyebar ke seluruh dunia, menjangkiti banyak hingga seluruh negara di dunia. Sudah menginfeksi kurang lebih 400 juta jiwa di seluruh dunia pada pertengahan kuartal pertama tahun 2022. Mencegah penyebaran COVID-19 merupakan tindakan yang harus segera dilakukan, salah satu caranya adalah dengan pendeteksian sedini mungkin. Pendeteksian COVID-19 selain menggunakan metode kedokteran, dapat dipertimbangkan mengenai penggunaan artificial intelligence. Penelitian mengenai metode pendeteksian COVID-19 menggunakan citra X-Ray yang telah dilakukan oleh Dhita menuai hasil yang cukup sukses. Menambahkan penelitian tersebut, kami melakukan metode pendeteksian menggunakan citra CT Scan. Beberapa penelitian mengenai pendeteksian COVID-19 menggunakan citra CT Scan seperti Tang et al. meneliti mengenai segmentasi citra CT Scan terhadap daerah local lesi terindikasi COVID-19 atau Pneumonia. Rahimzadeh, Attar, and S. M. Sakhaei juga melakukan penelitian sebelumnya mengenai pengklasifikasian pasien COVID-19 menggunakan citra CT Scan dengan mendapatkan hasil 90% akurasi dengan menggunakan metode FPN. ......Coronavirus Disease 2019 (COVID-19) is a disease caused by the novel coronavirus SARS-CoV-2. This disease which originates from the Hubei Province in China has already spread throughout the world, reaching many if not all countries in the world. There have been more than 400 million people infected across the globe as of the first quarter of 2022. Prevention of the spreading of the disease is very important, and one of the best ways to do so is to detect its infection as soon as possible. Aside from asking a doctor, the task of detecting COVID-19 using artificial intelligence has been considered. The research done by Dhita to detect COVID-19 using X-ray images has been seen as a success. Adding to that, we attempt to detect COVID-19 using CT Scan images. A couple research papers about detecting COVID-19 using CT Scan images such as the ones done by Tang et al. tried to segment CT Scan images related to the lesions that indicate COVID-19 or Pneumonia. Rahimzadeh, Attar, and S. M. Sakhaei also conducted research related to classifying COVID-19 patients using CT Scan images and found success at 90% accuracy with an FPN model.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library