Ditemukan 1 dokumen yang sesuai dengan query
Raditya Nurfadillah
"Sistem rekomendasi menjadi salah satu kebutuhan utama bagi penyedia layanan e-commerce untuk memberikan saran rekomendasi produk sesuai dengan apa yang diinginkan oleh pengguna. Salah satu pendekatan yang paling banyak dilakukan dalam membangun sistem rekomendasi adalah collaborative filtering, dengan menggunakan data explicit feedback, yang dapat berupa review atau rating. Sistem rekomendasi dengan pendekatan collaborative filtering telah banyak dikembangkan dengan menggunakan metode machine learning dan metode deep learning. Penelitian ini berfokus untuk mengembangkan sistem rekomendasi dengan pendekatan collaborative filtering berbasis deep learning dengan menggunakan data gabungan review dan rating. Teknik deep learning yang digunakan diperkaya dengan word embeddings untuk dapat menangkap interaksi yang terdapat dalam data review. Penelitian ini menggunakan arsitektur yang diadopsi dari CARL. Modifikasi yang dilakukan pada CARL meliputi pengubahan optimizer dan penggunaan beberapa pretrained word embedding yang berbeda. Selain itu, penelitian ini juga membandingkan performa sistem rekomendasi yang diusulkan antara dataset berbahasa Inggris dan berbahasa Indonesia. Untuk melakukan evaluasi performa sistem rekomendasi yang dikembangkan, digunakan metrik evaluasi mean squared error (MSE). Hasil penelitian menunjukkan modifikasi model CARL (Review-based) dengan menggunakan optimizer Adam (CARL (Review-based) – Adam) menunjukkan performa terbaik dan dapat mengalahkan performa dari baseline model.
Recommender systems are one of the main needs for e-commerce to provide product recommendations according to what the users want. One of the most widely used approaches in developing recommender systems is collaborative filtering, using explicit feedback data, which can be in the form of reviews or ratings. Various collaborative filtering methods have been developed using machine learning and deep learning methods. This study focuses on developing deep learning-based recommender systems with collaborative filtering approach using combined reviews and ratings data. The deep learning technique that being used is enriched with word embeddings to capture the interactions contained in the review data. This study uses an architecture adopted from CARL. Modifications made to CARL include changing the optimizer and using several different pretrained word embeddings. This study also compares the performance of the proposed recommender systems between English datasets and Indonesian datasets. To evaluate the performance of the recommender systems, the mean squared error (MSE) evaluation metrics is used. The results showed that the modification of CARL (Review-based) model using Adam optimizer (CARL (Review-based) – Adam) showed the best performance and could beat the performance of the baseline model."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership Universitas Indonesia Library