Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 207 dokumen yang sesuai dengan query
cover
Muhammad Fajar Fauzan Almahdy
Abstrak :
Pencemaran lingkungan adalah salah satu masalah serius disebabkan pembuangan limbah berbahaya dan beracun dari industri–industri yang tidak teregulasi. Salah satu material yang banyak digunakan sebagai zat warna adalah sunset yellow pada industri tekstil yang berdampak buruk, menyebabkan risiko kesehatan seperti depresi, kerusakan ginjal, kerusakan hati, dan kanker. Pada penelitian ini telah dilakukan sintesis nanokomposit Nanochitosan/Fe3O4−SrSnO3 untuk mendegradasi zat warna sunset yellow. Nankomposit Nanochitosan/Fe3O4−SrSnO3 dikarakterisasi dengan Fourier–transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–Vis), X–ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high–resolution transmission electron microscopy (HRTEM), Brunauer–Emmet–Teller (BET) dan ultraviolet visible–diffuse reflectance (UV–DRS). Pengaruh Fe3O4 terhadap sisi aktif SrSnO3 telah dipelajari dan energi celah pita dari SrSnO3 menjadi 2,4 eV dengan komposisi Fe3O4/SrSnO3 (3:1) dengan persen degradasi sebesar 88,45% . Nanochitosan ditambahkan sebagai support meningkatkan aktivitas dari nanokomposit Fe3O4−SrSnO3 dengan persen dgradasi 97,42%. Nanokomposit yang optimal yang digunakan untuk analisis kinetika reaksi dan isoterm adsorpsi adalah dengan kondisi massa 0,04 gram, pH 10, dan waktu selama 75 menit. Kinetika reaksi mengikuti psuedo first order dengan konstanta laju reaksi 0,058 dan sesuai dengan isoterm adsorpsi Langmuir ......Environmental pollution is one of the most serious problems caused by the disposal of hazardous and toxic waste from unregulated industries. One material that is widely used as a dye is sunset yellow in the textile industry which has adverse effects, causing health risks such as depression, kidney damage, liver damage, and cancer. In this study, Nanochitosan/ Fe3O4−SrSnO3 nanocomposite has been synthesized to degrade sunset yellow dye. Nanochitosan/ Fe3O4−SrSnO3 nanocomposites were characterized by Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmet-Teller (BET) and ultraviolet visible-diffuse reflectance (UV-DRS). The effect of Fe3O4 on the active side of SrSnO3 was studied and the band gap energy of SrSnO3 became 2.4 eV with Fe3O4/SrSnO3 composition (3:1) with a percent degradation of 88.45%. Nanochitosan added as support increases the activity of Fe3O4−SrSnO3 nanocomposite with 97.42% degradation percent. The optimal nanocomposite used for the analysis of reaction kinetics and adsorption isotherms was with a mass condition of 0.04 grams, pH 10, and time for 75 minutes. The reaction kinetics followed first order psuedo with a reaction rate constant of 0.058 and fit the Langmuir adsorption isotherm.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Hazim Mu'aafii
Abstrak :
Ketersediaan minyak bumi di dunia semakin menipis serta penggunaan bahan bakar fosil telah menyebabkan pencemaran lingkungan dan pemanasan global. Sehingga diperlukan pengembangan sumber energi terbarukan untuk menjadi subtitusi kebutuhan bahan bakar berbasis minyak bumi. Biodiesel dapat menjadi alternatif bahan bakar. Biodiesel adalah metil ester dapat disintesis melalui esterifikasi asam lemak misalnya adalah asam oleat yang banyak terkandung dalam minyak kelapa sawit. Proses esterifikasi memerlukan katalis asam. MIL-101(Cr) adalah metal organic framework yang tersusun dari logam kromium dan ligan asam tereftalat. MIL-101 (Cr) memiliki luas permukaan BET tinggi dan material ini memiliki potensi situs asam Lewis. Karenanya MIL-101 (Cr) dapat menjadi kandidat yang baik untuk katalis dalam esterifikasi asam lemak seperti asam oleat. Biodiesel juga bisa disintesis melalui transesterifikasi minyak nabati. Sehingga, dilakukan impregnasi logam Nikel pada MIL-101 (Cr) untuk meningkatkan kemampuan katalitiknya. Dalam penelitian ini hasil sintesis katalis MIL-101(Cr) dan Ni@MIL-101 (Cr) dilakukan karakterisasi dengan FTIR, XRD, SEM-EDS dan NH3-TPD. Hasil karakterisasi dapat diketahui struktur MIL-101 (Cr) sudah sesuai dan impregnasi Ni tidak merusak struktur MIL-101 (Cr). Hasil esterifikasi diperoleh untuk MIL-101 (Cr) memiliki persen konversi sebesar 96,06% sedangkan Ni@MIL-101 (Cr) memiliki persen konversi sebesar 12,95%. Untuk melihat metil ester yang terbentuk, hasil esterifikasi diuji GCMS. Dari hasilnya terbukti hampir semua asam lemak dapat terkonversi dengan katalis MIL-101 (Cr), dan masih banyak asam oleat yang belum terkonversi menjadi metil ester dengan katalis Ni@MIL-101 (Cr). Hasil transesterifikasi dengan minyak goreng kelapa sawit dapat dilihat terbentuknya 9-Octadecenoic acid, methyl ester dengan menggunakan katalis Ni@MIL-101 (Cr) dan tidak terbentuk metil ester dari asam oleat pada transesterifikasi menggunakan katalis MIL-101 (Cr). ......The availability of fossil fuel in the world is decreasing and the use of fossil fuels has caused environmental pollution and global warming. It is necessary to develop renewable energy sources to replace the need for fossil fuels. Biodiesel can be an alternative fuel. Biodiesel is a methyl ester that can be synthesized through the esterification of fatty acids, for example, oleic acid, which is abundant in palm oil. The esterification process requires an acid catalyst. MIL-101(Cr) is a metal organic framework composed of chromium metal and terephthalic acid ligands. MIL-101(Cr) has a high BET surface area and this material has potential of Lewis acid sites. Therefore MIL-101 (Cr) can be a good candidate for catalyst in the esterification of fatty acids such as oleic acid. Biodiesel can also be synthesized through plant based oil transesterification. Because of that, Nickel metal impregnation was carried out on MIL-101 (Cr) to increase its catalytic ability. In this study the results of the synthesis of MIL-101(Cr) and Ni@MIL-101(Cr) catalysts were characterized by FTIR, XRD, SEM-EDS and NH3-TPD. Based on the characterization results, the MIL-101 (Cr) structure is suitable and the Ni impregnation does not damage the MIL-101 (Cr) structure. The esterification results obtained for MIL-101 (Cr) have a conversion percentage of 96.06% while Ni@MIL-101 (Cr) has a conversion percentage of 12.95%. To see the methyl ester formed, the esterification results were tested by GCMS. The results show that almost all fatty acids can be converted with the MIL-101 (Cr) catalyst, and there is still a lot of oleic acid that has not been converted into methyl esters with the Ni@MIL-101 (Cr) catalyst. The results of transesterification with palm cooking oil can be seen from the formation of 9-Octadecenoic acid, methyl ester using Ni@MIL-101 (Cr) catalyst and no methyl ester from oleic acid in transesterification using MIL-101 (Cr) catalyst.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fauziah Fitri Ramadhani
Abstrak :
Peningkatan penduduk dunia sebanding dengan kebutuhan pemenuhan energi dalam kehidupan sehari-hari. Gas CO2 masih menjadi kontributor efek rumah kaca dan peningkatan suhu bumi. Riset terus dilakukan sebagai upaya mengatasi permasalahan tersebut dengan tetap mempertimbangkan pemenuhan kebutuhan energi dunia. Photoelectrochemistry (PEC) atau sel fotoelektrokimia merupakan salah satu metode yang banyak dikembangkan karena menawarkan kondisi reaksi pada suhu dan tekanan lingkungan sehingga minim emisi dan hemat biaya operasional. Dengan prinsip kerja sel fotoelektrokimia yang menyerap energi dari sinar matahari dan mengubahnya menjadi spesi bermuatan, peneliti melihat potensi konversi gas CO2 menjadi energi baru yang lebih bermanfaat. Penelitian ini berfokus pada konversi gas CO2 menjadi metanol dengan menggunakan elektroda blue-TiO2 nanotube arrays yang dilapisi kobalt fosfat (TNA)/CoPi. TiO2 merupakan material yang bersifat stabil, murah, dan ramah lingkungan, namun memiliki kelemahan pada energi celah pitanya yang lebar (3,2 eV) sehingga hanya aktif di bawah sinar UV. Modifikasi dilakukan untuk mengubah TiO2 menjadi black-TNA dan blue-TNA yang berfasa anatase dan blue-TNA/CoPi yang memiliki konduktifitas, kemampuan absorbansi sinar tampak, dan aktivitas fotoelektrokimianya yang lebih baik. Rancangan sistem fotoelektrokimia terdiri dari blue-TNA/CoPi sebagai fotoanoda, black-TNA sebagai katoda, dan Ag/AgCl sebagai elektroda pembanding. Selama proses fotoelektrokimia, diberikan eksternal bias potensial dengan variasi potensial -0,0214 V, -0,2714 V, dan -0,5214 V vs. RHE. Dengan konfigurasi sel dan kondisi operasi dalam penelitian ini, diperoleh hasil konversi metanol terbaik pada pengaruh potensial eksternal sebesar -0,5214 V sebesar 2,996 µmol. ......The growing world population increases the energy demand. However, increasing energy consumption also produces pollution, and CO2 mainly contributes to the greenhouse effect and increases the earth’s temperature. Therefore, this study strives to overcome these problems while considering the world’s energy demand. Photoelectrochemical cell (PEC) is a method that has been widely developed because it offers reaction at standard temperature and pressure, resulting in minimal emissions and reduced operational costs. With the principle of photoelectrochemical cells that absorbs energy from sunlight and converts it into charged chemical species, the researchers found the potential for converting CO2 gas into more usable renewable energy. This research aims to convert CO2 gas into methanol using blue-TiO2 nanotube arrays (TNA)/CoPi electrodes. TiO2 is a stable, inexpensive, and environmentally friendly material with a weakness in its wide bandgap characteristic (3.2 eV), which makes it only active under UV light. Modifications were conducted to convert TiO2 into black-TNA, blue-TNA, and blue-TNA/CoPi, which have better conductivity and photoelectrochemical activity under visible light. The design of the photoelectrochemical system consists of blue-TNA/CoPi as the photoanode, black-TNA as the cathode, and Ag/AgCl as the reference electrode. During the photoelectrochemical process, an external bias potential is applied with potential variations of -0.0214 V, -0.2714 V, and -0.5214 V vs. RHE. With the cell configuration and operating conditions, this study found that the best methanol conversion results were obtained at the influence of an external potential of -0.5214 V of 2.996 µmol.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Aulia Avicenna
Abstrak :
Hidrogen merupakan bahan bakar potensial yang dapat menggantikan bakar fosil. Hidrogen dapat diproduksi dengan berbagai cara, diantaranya adalah dengan Photo Electro Catalysis (PEC) untuk aplikasi water splitting dari salty water. Sel PEC dapat menggunakan material semikonduktor TNA. Namun TiO2 memiliki band gap yang lebar sehingga secara hanya aktif pada sinar UV, dan kurang aktif didaerah sinar tampak. Sementara itu jika TiO2 dimodifikasi dengan WO3 aktivitasnya dapat menjangkau daerah sinar tampak. Dalam penelitian ini dilakukan elektrodeposisi WO3 pada TiO2, lalu dilakukan karakterisasi dan kemampuannya menghasilkan arus cahaya pada daerah sinar tampak, serta uji produksi hidrogen dari air. Hasil karakterisasi menunjukkan terjadinya penurunan band gap seiring dengan lama waktu elektrodeposisi, yaitu 5 menit, 10 menit, dan 15 menit yang masing – masing menghasilkan penurunan band gap sebesar 3.12 eV; 2,97 eV; dan 2,87eV. Lebih lanjut dari uji Multiple Pulse Amperometry (MPA) dibawah sinar UV diamati terjadinya peningkatan arus cahaya dari TNA saja dibandingkan dengan WO3/TiO2 yakni 0.00031 mA/cm2 ­menjadi 0.0037 mA/cm2. Penerapan aplikasi PEC dengan penerapan fotoanoda WO3/TiO2 dan katoda Pt/rTNA menghasilkan produksi gas sebanyak 0,0026 mikromol hidrogen dalam waktu 4 jam penyinaran cahaya. ......Hydrogen is a potential fuel that can replace fossil fuels. Hydrogen can be produced in various ways, and one is through Photo Electro Catalysis (PEC) for water-splitting applications from salty water. PEC cells can utilize TNA semiconducting materials. However, TiO2 has a wide band gap, making it only active under UV light and less active in the visible light range. On the other hand, if TiO2 is modified with WO3, its activity can extend to the visible light range. In this study, electrodeposition of WO3 onto TiO2 was performed, followed by characterization and its ability to generate photocurrent in the visible light range, as well as hydrogen production from water. The characterization results showed a decrease in the band gap with increasing electrodeposition time: 5 minutes, 10 minutes, and 15 minutes, resulting in band gap reductions of 3.12 eV, 2.97 eV, and 2.87 eV, respectively. Furthermore, multiple pulse amperometry (MPA) tests under UV light revealed an increase in photocurrent from TNA compared to WO3/TiO2, with values of 0.00031 mA/cm2 and 0.0037 mA/cm2, respectively. The implementation of the PEC application using WO3/TiO2 photoanode and Pt/rTNA cathode resulted in the production of gas, specifically hydrogen, with a yield of 0,0026 micromoles in 4-hours light exposure.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfansyah Izzul Haq
Abstrak :
Pengotoran membran telah menjadi tantangan utama dalam penerapan praktis teknologi membran untuk pengolahan dan pemurnian air limbah. Dalam penelitian ini, membran oksida grafena (GO) terinterkalasi g-C3N4@TiO2-nanowire (GO/CN@TNW) yang dapat didaur ulang berhasil dibuat melalui interaksi elektrostatik dan proses bantuan filtrasi vakum. Membran yang dipreparasi memiliki aktivitas respon cahaya yang lebih tinggi daripada TNW murni, yang disebabkan oleh pengenalan GO dengan penyerapan dan mobilitas pembawa yang tinggi, dan efek sinergis dari TNW dan CN. Selain itu, interaksi penumpukan π - π antara GO dan molekul pencemar organik berkontribusi pada efisiensi adsorpsi yang sangat baik dari membran GO/CN@TNWs (91,25%) terhadap tetrasiklin hidroklorida (TCH). Kemampuan degradasi fotokatalitik membran juga didapatkan baik, dengan efisiensi fotodegradasi dari membran GO/CN@TNW terhadap tetrasiklin hidroklorida sebesar 86,825%. Oleh karena itu disimpulkan bahwa membran GO/CN@TNWs dapat digunakan untuk menghilangkan TCH dari air limbah. Kinerja fotokatalitik komposit membran tersebut dapat diaktifkan oleh cahaya matahari, memberikan potensi membran adsorpsi berbasis GO/CN@TNW dengan kemampuan daur ulang untuk realisasi pemurnian air limbah skala besar. ......Membrane fouling has been a significant challenge in applying membrane technology for wastewater treatment and purification. This study successfully prepared a recyclable g-C3N4@TiO2-nanowire (GO/CN@TNW) intercalated graphene oxide (GO) membrane through electrostatic interaction and vacuum filtration-assisted processes. The prepared membranes had higher light response activity than pure TNW due to the introduction of GO with high absorption and carrier mobility and the synergistic effect of TNW and CN. In addition, the π - π stacking interactions between GO and organic pollutant molecules contributed to the excellent adsorption efficiency of GO/CN@TNWs (91.25%) membranes against tetracycline hydrochloride (TCH). The ability of photocatalytic degradation of the membrane was also found to be good, with a photodegradation efficiency of the GO/CN@TNW membrane against tetracycline hydrochloride of 86.825%. Therefore it was concluded that GO/CN@TNWs membranes could be used to remove TCH from wastewater. The photocatalytic performance of these composite membranes can be activated by sunlight, giving potential GO/CN@TNW-based adsorption membranes with recyclability to realize large-scale wastewater purification.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Radite Panca
Abstrak :
Krisis iklim disebabkan oleh ketergantungan manusia akan energi berbahan dasar fosil berdampak pada peningkatan gas CO2 ke atmosfer bumi. Hal tersebut menyebabkan suhu rata-rata global meningkat dan berimplikasi pada bencana alam yang terjadi di seluruh dunia. Maka dari itu diperlukan energi alternatif yang ramah lingkungan dan dapat diperbaharui. Salah satu sumber energi alternatif itu adalah Dye Sensitized Solar Cell (DSSC) Berbasis N719. Pada pernelitian ini disusun perangkat DSSC dengan TiO2- nanotubes sebagai semikonduktor, ruthenium complex dye N719 sebagai fotosensitizer, Platina sebagai elektroda pembanding, dan elektrolit (I-/I3-). Preparasi TiO2-nanotubes dengan metode two-step anodization pada variasi waktu anodisasi 30, 60, 90, 180 menit. Material kemudian dikarakterisasi dengan SEM, XRD, FTIR, UV-VIS-DRS, dan potensiostat. Hasil penelitian tinggi tabung, dye loading, dan efisiensi DSSC pada variasi waktu anodisasi 30, 60, 90, 180 menit secara berurutan tinggi tabung sebesar 5,28 μm; 7,61 μm; 11,43 μm; 9,45 μm, dye loading sebesar 67,13 nmol/cm2; 125,44 nmol/cm2; 237,97 nmol/cm2; 207,91 nmol/cm2, dan persen efisiensi DSSC 1,72%; 2,13%; 3,32%; 3,03%. Hasil yang didapatkan menunjukkan nilai optimum persen efisiensi DSSC berbanding lurus dengan tinggi tabung dan dye loading TiO2-nanotubes. ......Climate crisis caused by human need for fossil fuel energy have an impact on increasing CO2 emission gas into the atmosphere. More than that, disaster linked to the climate crisis has always been part of our Earth’s system but they are becoming more frequent and intense as the world warms due to an increase the Earth’s average temperature. Therefore we need alternative energy that can be renewed as well as environmentally friendly. One of the renewable and green energy is Dye-Sensitized Solar Cell (DSSC) based on dye N719. In this research, The DSSC device fabricated by TiO2-nanotubes as semoconductor, ruthenium complex dye N719 as photosensitizer, Platina (Pt) as counter electrode, and electrolyte solution (I-/I3-). The preparation of TiO2-nanotubes by two-step anodization method followed by anodization time treatment into four variations, these were in 30 minutes, 60 minutes, 90 minutes, and 180 minutes to get highly ordered length of TiO2-nanotubes. These materials were characterized by SEM, XRD, FTIR, UV-VIS- DRS, dan Electrochemical Work Station. The results of tube length, dye loading, and DSSCs efficiency at four variations of anodization time 30 minutes, 60 minutes, 90 minutes, and 180 minutes sequentially are tube length of 5,28 μm; 7,61 μm; 11,43 μm; 9,45 μm, dye loading of 67,13 nmol/cm2; 125,44 nmol/cm2; 237,97 nmol/cm2; 207,91 nmol/cm2, dan DSSC efficiency of 1,72%; 2,13%; 3,32%; 3,03%. The results show optimum value of DSSC efficiency directly proportional to tube length and dye loading of TiO2-nanotubes.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kamilla Manzilina Istmah
Abstrak :
Saat ini dibutuhkan perubahan atau inovasi dalam pembuatan amonia yang lebih ramah lingkungan dan mengurangi penggunaan bahan bakar fosil. Salah satu alternatifnya yaitu dengan memanfaatkan konsep reduksi fotoelekrokimia menggunakan material semikonduktor TiO2. Pada penelitian ini, dilakukan modifikasi TiO2 Nanotube Array (TNA) melalui metode anodisasi, dan dilanjutkan dengan reduksi secara elektrokimia untuk mendapatkan spesi TiO2 dengan populasi Ti3+ yang diperkaya (Blue TiO2 dan Black TiO2), disertai variasi annealing yang berbeda untuk mempelajari pengaruhnya terhadap morfologi dan karakteristik fotoelektrokimia. Selanjutnya dilakukan evaluasi kinerja White TiO2, Blue TiO2 dan Black TiO2 Nanotube Array (TNA) sebagai elektroda pada sistem fotoelektrokimia untuk konversi N2 menjadi amonia. Hasil penelitian menunjukkan modifikasi TiO2 dengan metode self-doping menghasilkan blue TiO2 dan black TiO2 Nanotube Array (TNA) yang memiliki morfologi dan aktivitas fotoelektrokimia lebih baik berdasarkan hasil karakterisasi yang diperoleh dengan adanya spesi Ti3+ dan oxygen vacancy yang terbentuk. Berdasarkan karakterisasi FTIR intensitas Ti-O-Ti semakin berkurang akibat semakin banyaknya spesi Ti3+ dan oxygen vacancy. Hal ini mempengaruhi pergeseran band gap dari 3,2 eV menjadi <3,2 eV. Selain itu, Lama waktu annealing mempengaruhi aktivitas fotoelektrokimia dari White TiO2, Blue TiO2 dan Black TiO2 Nanotube Array (TNA). semakin lama waktu annealing semakin banyak spesi Ti3+ yang terbentuk sehingga meningkatkan aktivitas fotoelektrokimia. namun jika melewati batas maksimum Ti3+ akan ter-reoksida kembali dan menurunkan aktivitas fotoelektrokimia. Berdasarkan hasil XRD waktu anneling tidak secara signifikan mempengaruhi fasa kristal, namum mempengaruhi ukuran kristal. Photocurrent tertinggi diperoleh pada Blue TiO2 dengan densitas arus sebesar 0,0301 mA/cm-2 pada penyinaran sinar UV. Onset potensial OER paling rendah dan onset potensial HER, NRR paling tinggi didapatkan pada Blue TiO2. Pada pengaplikasian konversi N2 menjadi amonia menggunakan sistem PEC dengan fotoanoda Black TiO2 Sedangkan untuk katoda gelap menggunakan White TiO2 waktu anneling 4 jam, Blue TiO2 waktu anneling 2 jam dan Black TiO2 waktu anneling 2 jam pada kondisi penerangan gelap-gelap dan gelap terang dikedua kompartemen. Dari hasil karakterisasi dan aplikasi konversi reduksi N2 menjadi amonia, didapatkan kesimpulan Blue TiO2 memiliki performa atau kinerja yang lebih baik dari black TiO2 dan White TiO2 sebagai elektroda pada sistem fotoelektrokimia untuk konversi N2 menjadi amonia karena memiliki spesi Ti3+ dan oxygen vacancy lebih banyak. Dengan menghasilkan amonia sebesar 0,06413 μmol/h cm2 dengan waktu anneling 2 jam pada kondisi penerangan gelap-gelap di kedua sisi. Hal ini menunjukkan semakin banyaknya spesi Ti3+ dan oxygen vancancy yang terbentuk, semakin efektif untuk konversi nitrogen menjadi amonia. ......Currently, changes or innovations are needed in the manufacture of ammonia that is more environmentally friendly and reduces the use of fossil fuels. One alternative is to utilize the concept of photoelectrochemical reduction using a TiO2 semiconductor material. In this study, a modification of the TiO2 Nanotube Array (TNA) was carried out by anodizing method, followed by electrochemical reduction to obtain TiO2 species with enriched Ti3+ populations (Blue TiO2 and Black TiO2), with different variations of annealing to study their effect on morphology and characteristics. photoelectrochemistry. Furthermore, the performance evaluation of White TiO2, Blue TiO2 and Black TiO2 Nanotube Array (TNA) as electrodes in the photoelectrochemical system for the conversion of N2 to ammonia was carried out. The results showed that modified TiO2 using the self-doping method produced blue TiO2 and black TiO2 Nanotube Array (TNA) which had better morphology and photoelectrochemical activity based on the characterization results obtained in the presence of Ti3+ species and the formed oxygen vacancy. Based on the FTIR characterization, the intensity of Ti-O-Ti decreases because there are more Ti3+ species and empty oxygen. This affects the shift in the band gap from 3.2 eV to <3.2 eV. In addition, annealing time affects the photoelectrochemical activity of White TiO2, Blue TiO2 and Black TiO2 Nanotube Array (TNA). The longer the time, the more Ti3+ species formed, thereby increasing the photoelectrochemical activity. However, if it exceeds the maximum limit, Ti3+ will be re-oxidized and reduce the photoelectrochemical activity. Based on the results of XRD annealing does not significantly affect the crystal phase, the amount of time that affects the crystal size. The highest photocurrent was obtained on Blue TiO2 with a current density of 0.0301 mA/cm- 2 under UV irradiation. The lowest OER onset potential and HER potential onset, the highest NRR was found in Blue TiO2. In the application of the conversion of N2 to ammonia using a PEC system with a Black TiO2 photoanode. Meanwhile, for the dark cathode, White TiO2 annealed time is 4 hours, Blue TiO2 annealed time is 2 hours and Black TiO2 annealed time is 2 hours in dark and light conditions in both compartments. From the results of the characterization and application of the conversion of N2 to ammonia reduction, it was concluded that Blue TiO2 has better performance or performance than Black TiO2 and White TiO2 as electrodes in a photoelectrochemical system for the conversion of N2 to ammonia because it has Ti3+ species and more oxygen vacancies. By producing ammonia of 0.06413 mol/h cm2 with an anneling time of 2 hours under dark lighting conditions on both sides. This shows that the more Ti3+ and oxygen vancancy species formed, the more effective it is to convert nitrogen into ammonia.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mutia Nurfaozi
Abstrak :
Titanium dioksida (TiO2) adalah fotokatalis yang paling banyak dipelajari dengan sifat semikonduktor tipe-n karena efisiensi tinggi, stabilitas, non-toksik, biaya rendah, kelimpahan dialam, dan sintesis mudah. Keterbatasan TiO2 yang memiliki band gap lebar menyebabkan TiO2 hanya aktif pada sinar UV sehingga berefek pada aktivitas fotokatalitiknya. TiO2 hitam dengan celah pita yang menyempit sehingga memperluas penyerapan penuh spektrum sinar matahari dan mendorong peningkatan aktivitas fotokatalitik, dengan memperkenalkan gangguan permukaan pada TiO2. Pengembangan fotoanoda black TiO2 nanotube array (BTNA) yang didoping Ni menghadirkan sejumlah besar Ti3+ dan kekosongan oksigen, yang memastikan kemampuan tinggi menyerap cahaya tampak dan inframerah (Liu et al., 2015). Pada penelitian ini penggunaan metode anodisasi dan dip coating dilakukan untuk membuat fotoanoda black TiO2 nanotube termodifikasi NiO dengan memvariasikan banyaknya siklus pencelupan terhadap kinerja fotoelektrokimianya. Teknik dip coating mudah dilakukan, sederhana, menggunakan suhu rendah, dan hasil yang merata. NiO/BTNA dikarakterisasi dengan SEM, FTIR, dan UV-Vis DRS. Uji aktivitasnya juga dilakukan terhadap degradasi fenol. NiO/BTNApada variasi terbaik yaitu 3 kali siklus pencelupan berhasil meningkatkan performa fotoelektrokimia dari fotoanoda dengan kemampuan mendegradasi fenol sebesar 48,67% pada kondisi sinar tampak, dimana persentase lebih besar didapatkan ketika dibandingkan dengan BTNA. ......Titanium dioxide (TiO2) is the most studied photocatalyst with n-type semiconductor properties due to its high efficiency, stability, non-toxicity, low cost, abundance in nature, and easy synthesis. The limitation of TiO2 which has a wide band gap causes TiO2 to be only active in UV light which has an effect on its photocatalytic activity. Black TiO2 with a narrow band gap thus broadens the full absorption spectrum of sunlight and promotes increased photocatalytic activity, by introducing surface interference on TiO2. The development of Ni-doped black TiO2 nanotube array (BTNA) photoanodes presents a large amount of Ti3+ and oxygen vacancies, which ensures a high ability to absorb visible and infrared light (Liu et al., 2015). In this study, the use of anodization and dip coating methods was carried out to make NiO-modified black TiO2 nanotube photoanodes by varying the number of immersion cycles on the photoelectrochemical performance. The dip coating technique is easy, simple, uses low temperatures, and produces even results. NiO/BTNA was characterized by SEM, FTIR, and UV-Vis DRS. The activity test was also carried out on phenol degradation. NiO/BTNA at the best variation of 3 dyeing cycles succeeded in increasing the photoelectrochemical performance of the photoanode with the ability to degrade phenol by 48.67% under visible light conditions, where a higher percentage was obtained when compared to BTNA.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewi Azizah
Abstrak :
Dominasi penggunaan bahan bakar fosil sebagai sumber energi mendorong para peneliti untuk mengembangkan energi alternatif yang bersifat terbarukan dan ramah lingkungan. Hidrogen merupakan salah satu kandidat energi alternatif yang potensial. Hidrogen dapat diproduksi melalui metode ramah lingkungan dengan cara pemecahan air (water splitting), termasuk dari air laut yang ketersediannya melimpah di alam. Teknologi pemecahan air yang banyak dikembangkan saat ini adalah melalui fotoelektrokatalisis, yaitu dengan memanfaatkan sinar matahari menggunakan sel fotoelektrokimia dengan foto elektroda berbasis semikonduktor. Dalam penelitian ini dilakukan uji kinerja salah satu jenis sel tandem DSSC (Dyes Sensitized Solar Cell) yang ditandemkan dengan sel PEC (Photo Electrochemical). Untuk itu, dilakukan studi preparasi semikonduktor TiO2 yang digabungkan dengan BiOI sebagai foto elektroda bagian PEC dalam sistem tandem DSSC-PEC, untuk proses produksi hidrogen (H2) dari elektrolit air berkadar garam tinggi (salty water). Sintesis TiO2/BiOI dilakukan menggunakan metode anodisasi untuk pembentukan TiO2 nanotubes dan deposisi secara elektrokimia untuk pembentukan BiOI nanoflakes. Dalam penelitian ini dilakukan investigasi pengaruh variasi waktu deposisi BiOI (5 menit, 10 menit, dan 15 menit) terhadap kinerja fotoelektrokimia dan kemampuannya menghasilkan hidrogen. TiO2-nanotubes/BiOI hasil sintesis menunjukkan aktivitas fotokatalitik yang lebih baik daripada TiO2 nanotubes tunggal, dimana TiO2 nanotubes/BiOI aktif pada daerah visible dan memberikan respon photocurrent yang lebih tinggi. TiO2 nanotubes/BiOI dengan waktu deposisi 10 menit memperlihatkan respon photocurrent tertinggi dan dipilih untuk digunakan pada produksi H2. Sel tandem DSSC-PEC yang disintesis dengan perpanjangan zona katalisis foto elektroda TiO2 nanotubes/BiOI berhasil memproduksi hidrogen sebesar 0,0029 μmol/mL, saat dioperasikan selama 390 menit. ......In order to reduce the use of fossil fuels as an energy sources encourages researchers to develop alternative energy that is renewable and environmentally friendly. Hydrogen is one of the potential candidates. Hydrogen can be produced via environmentally friendly methods by water splitting, including from sea water which is abundantly available in nature. One of water splitting methods that is being developed today is photo-electrocatalysis, which is by utilizing sunlight using photoelectrochemical cells with semiconductor-based electrodes. In this study, a performance test of one type of DSSC (Dyes Sensitized Solar Cell) tandem cell with PEC (Photo Electrochemical) cells was conducted. For this reason, a study of the preparation of the TiO2 semiconductor combined with BiOI as a photoelectrode in the DSSC-PEC tandem system was carried out for the production of hydrogen (H2) from a high salt water electrolyte. The preparation of TiO2/BiOI was carried out using anodization method for the formation of TiO2 nanotubes and electrochemical deposition for the formation of BiOI nanoflakes. This study investigated the effect of variations in BiOI deposition time (5 minutes, 10 minutes, and 15 minutes) on photoelectrochemical performance and its ability to produce hydrogen. The synthesized TiO2-nanotube/BiOI showed better photocatalytic activity than bare TiO2 nanotubes, where the TiO2 nanotube/BiOI was active in the visible region and gave a higher photocurrent response. TiO2 nanotubes/BiOI with a deposition time of 10 minutes responded to the highest photocurrent and were used for application in H2 production. The DSSC-PEC tandem cell prepared with the addition of the TiO2 nanotubes/BiOI photo-electrode catalysis zone succeeded in producing hydrogen as much as 0,0029 μmol/mL, during 390 minutes operation.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aviciena Akbar Enggartyasto
Abstrak :
Senyawa asam linoleat dan asam kaprat merupakan asam lemak yang telah dimanfaatkan secara luas sebagai produk industri dan memiliki berbagai aktivitas biologis diantaranya ialah antimikroba dan antioksidan. Modifikasi struktur senyawa asam lemak merupakan salah satu upaya dalam meningkatkan aktivitas biologisnya. Pada penelitian ini dilakukan sintesis ester dari asam linoleat dan asam kaprat dengan mereaksikan keduanya dengan BHA (butylated hydroxyanisole) dan BHT (butylated hydroxytoluene) berdasarkan reaksi esterifikasi Steglich. Produk ester dimurnikan dengan kromatografi kolom dan dikarakterisasi dengan FTIR dan UV-Vis. Produk ester yang diperoleh dilakukan pengujian toksisitas dengan metode BSLT, uji antioksidan dengan metode DPPH, dan uji antimikroba dengan metode difusi cakram. Dari hasil pengujian BSLT, nilai LC50 masing masing produk yaitu, asam kaprat-BHT (404,162 ppm), asam kaprat-BHA (1.204,1 ppm), asam linoleat-BHT (171,316 ppm), dan asam linoleat-BHA (1.204,1 ppm). Berdasarkan hasil pengujian antioksidan keempat senyawa ester dikategorikan sebagai senyawa yang tidak aktif. Pengujian antimikroba terhadap produk ester menunjukkan hasil yang beragam. Pada konsentrasi 1000 ppm senyawa asam kaprat-BHA dan asam linoleat-BHA memiliki aktivitas antibakteri yang lemah terhadap bakteri E. coli dan S. aureus, sedangkan produk asam kaprat-BHT dan asam linoleat-BHT tidak memiliki aktivitas antibakteri terhadap kedua bakteri tersebut. ......Linoleic acid and capric acid are the common industrial products with various biological properties including antimicrobial and antioxidant. Structure modification of fatty acids could improve their biological activity. In this study, esters synthesis carried out by reacting fatty acid with BHA (butylated hydroxyanisole) and BHT (butylated hydroxytoluene) via Steglich esterification reaction. As a result, the ester products were purified by chromatography column and characterized by FTIR also UV-Vis. In addition, the products were tested for toxicity with BSLT method, for antioxidant assay with DPPH method and for antimicrobal assay with disc diffusion method. Based on the BSLT test, LC50 values of capric acid-BHT (404.162 ppm), capric acid-BHA (1,204.1 ppm), linoleic acid-BHT (171,316 ppm), and linoleic acid-BHA (1,204.1 ppm), respectively. Capric acid-BHT and linoleic acid-BHT compounds showed its LC50 values result under 1000 ppm which can be classified as a low toxicity level compound while capric acid-BHA and linoleic acid-BHA compounds showed LC50 values above 1000 ppm which can be classified as a non-toxic compound. Four ester products were categorized as inactive antioxidant compounds. Antimicrobial assay of ester products showed different results. At the concentration of 1000 ppm capric acid-BHA and linoleic acid-BHA have weak antibacterial activity against E. coli and S. aureus bacteria, while capric acid-BHT and linoleic acid-BHT products have no antibacterial activity against E. coli and S. aureus bacteria.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>