Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Mohamad Abduh, compiler
Jakarta: Departemen Pendidikan dan Kebudayaan, 1984
928 MOH b (1)
Buku Teks SO  Universitas Indonesia Library
cover
Mohamad Abduh, compiler
Jakarta : Departemen Pendidikan dan Kebudayaan, 1984
R 920.598 26 MOH b
Buku Referensi  Universitas Indonesia Library
cover
Fitria Hasanah
"Senyawa bioaktif dari kulit manggis yaitu mangostin berpotensi pencegah kanker, mangostin mampu menghambat pembentukan senyawa pencetus kanker usus besar. Masyarakat Indonesia telah banyak mengolah kulit manggis ini secara langsung yaitu menjadi minuman segar dengan cara di jus atau diseduh. Namun untuk mendapatkan kandungan senyawa mangostin yang lebih tinggi perlu dilakukan ekstraksi. Fraksinasi menggunakan etil asetat telah diteliti merupakan fraksi yang mengandung mangostin tertinggi disbanding pelarut etanol dan butanol.
Fraksi etil-asetat ekstrak kulit manggis (F002) ini nantinya akan menjadi bahan aktif obat kanker kolon yang di enkapsulasi menggunakan biopolimer kitosan-alginat. Kegunaan ekstrak yang terjerap dalam sediaan mikropartikel biopolimer kitosan-alginat adalah untuk meningkatkan kerja senyawa bioaktif yaitu dengan sistem pelepasan obat yang terkendali. Pelepasan ekstrak bioaktif mangostin terjerap dalam sediaan mikropartikel dilakukan pada dalam media fluida sintetik yang meniru cairan dalam sistem pencernaan.
Hasil analisa kandungan senyawa mangostin menggunakan spektrofotometer UV dan analisa aktivitas sitotoksistas menggunakan uji Brine Shrimp Test (BST). Dari hasil berbagai olahan jus kulit manggis didapat metode terbaik pengolahan dimana menghasilkan kandungan senyawa mangostin tertinggi dan aktivitas sitotoksistas terbaik yaitu dengan cara direbus dan kemudian di blender. Untuk senyawa mangostin dari fraksi F002 dibandingkan antara sebelum dan setelah enkapsulasi dari hasil rilis dalam media fluida sintetik. Dari hasil rilis didapatkan bahwa enkapsulasi tidak berpengaruh terhadap kandungan dan sitotoksisitas senyawa mangostin sehingga sediaan dalam mikropartikel dapat dikembangkan menjadi sistem pelepasan obat yang terkendali.

Bioactive compound from mangosteen pericarp namely mangostin can be obtained from various kind of process such as juice or tea. The main purpose of this research is to observe antiproliferative (inhibition of cancer cell growth) of mangostin bioactive compound from mangosteen pericarp in chitosan-alginate preparation. Extract in chitosan-alginate preparation improve performance of bioactive compound by controlling the drug release in gastrointestinal tract, until reaching colon.
Mangostin bioactive compound in chitosan-alginate preparation will be observed and tested in synthetic fluid, which is made alike gastrointestinal tract fluid. In vitro cytotoxicity test of mangostin bioactive compound in synthetic gastrointestinal tract fluid is using Brine Shrimp Test (BST). The best method of processing fresh mangostin pericarp is by boiling and blend it.
It result the highest mangostin bioactive. Result of comparison between mangostin compound before and after in microparticle chitosan-alginate is there is no effect to cytotoxity activity. So Sequential in vitro release study demonstrated that controlled release of mangostin-loaded microparticles were achievable which lead to potential application in gastrointestinal delivery for anticancer therapy purpose.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S60121
UI - Skripsi Membership  Universitas Indonesia Library
cover
Saraswati Andani Satyawardhani
"ABSTRAK
Pada pembuatan gemuk bio ini digunakan Kalsium karbonat atau CaCO3 berukuran submikro-mikro sebagai aditif padat untuk meningkatkan sifat antiwear dari gemuk bio yang dihasilkan dengan NLGI #2. Penelitian ini diawali dengan pengepoksidasian minyak sawit pada suhu 65 ˚C; sintesis gemuk bio yang meliputi proses pengadukan, pemanasan, dan saponifikasi pada suhu maksimum 165 ˚C; homogenisasi pada suhu 70 ˚C; serta pengujian karakteristik dan performa gemuk bio yang meliputi uji konsistensi, uji dropping point, serta four ball test untuk menguji sifat antiwear gemuk bio dengan kecepatan putaran sebesar 1150 rpm. Adapun variabel yang terdapat pada penelitian ini yaitu waktu dan suhu selama proses sebagai variabel control; komposisi aditif CaCO3 sebagai variabel bebas; ukuran partikel CaCO3, komposisi base oil, thickener agent, dan BHT serta hasil uji karakteristik sebagai variabel terikat. Hasil yang didapat yaitu gemuk bio NLGI #2 dengan dropping point pada suhu 301 ˚- 317 ˚C. Untuk hasil pengujian antiwear terbaik didapat pada gemuk bio dengan penambahan 3,5% CaCO3 submikro-mikro dengan pengurangan massa ball bearing sebesar 0,7 mg, sementara pada gemuk bio dengan 0% CaCO3 pengurangan tersebut sebesar 250 mg.

ABSTRACT
In the making of this bio grease, calcium carbonate or CaCO3 in submicro-micro size is used as a solid additive to increase its antiwear properties. To start the research, the epoxidation of palm oil in 65 ˚C is done first; and then synthesizing of bio grease which consists of mixing, heating, and saponification with maximum temperature at 165 ˚C; homogenization in 70 ˚C; and characterization tests that includes the concistency test, dropping point test, and four ball test. The variable contained in this research are time and temperature as control variable; composition of CaCO3 as independent variable; CaCO3 particle size, composition of base oil, thickener agent, BHT, and the result of characterization test as dependent variable. To start the research, the epoxidation of palm oil is done first, and then synthesizing of bio grease, and characterization testing that includes the elasticity test, concistency test, dropping point test, and four ball test in 1150 rpm. The results of this research are, the bio grease has NLGI #2 with 301 ˚- 317 ˚C in dropping point test. For the antiwear test, the best result is possessed by bio grease with 3.5% of CaCO3 addition with reduction of mass ball bearing as much as 0.7 mg, meanwhile in bio grease with 0% of CaCO3 gave 250 mg reduction of mass ball bearing."
2015
S59168
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putu Geraldo Chiyoda Wiraspati
"ABSTRAK
Pembuatan gemuk bio kalsium kompleks dengan nilai NLGI (National Lubricating Grease Institute) #2 yaitu yang memiliki konsistensi semi-solid akan ditambahkan aditif talc untuk meningkatkan sifat antiwearnya serta mengurangi friksi. Gemuk yang dihasilkan berbahan dasar minyak kelapa sawit dan sabun kalsium kompleks sebagai thickening agent-nya. Sintesis gemuk tersebut dilakukan dengan cara melakukan proses pengadukan, pemanasan, dan reaksi saponifikasi pada suhu maksimum 165oC antara sabun kalsium kompleks secara in situ dalam minyak RBDPO (Refine Bleach Deodorized Palm Oil) yang terepoksidasi pada suhu 65oC. Selanjutnya dilakukan pendinginan dan homogenisasi pada suhu 70oC, serta penambahan aditif talc yang divariasikan komposisinya: 0%, 2,5%, 5%, 7,5%, dan 10% dari berat gemuk. Pengujian karakteristik dari gemuk bio yang dihasilkan meliputi uji konsistensi, uji dropping point dan four ball test dengan kecepatan putaran 1000 rpm. Adapun variable yang terdapat pada penelitian ini yaitu waktu dan suhu selama proses serta ukuran partikel talc sebagai variabel control; komposisi aditif talc sebagai variable bebas; komposisi base oil, thickener agent, dan aditif antioksidan BHT (Butylated Hydroxy Toluene) serta hasil uji karakteristik sebagai variable terikat. Gemuk terbaik yang dihasilkan memiliki sifat antiwear terbaik pada penambahan 2,5% talc dengan jumlah keausan terkecil 0,5 mg, dropping point pada suhu 265oC. Sementara pada penelitian sebelumnya gemuk terbaik yang dihasilkan memiliki jumlah keausan sebesar 0,7 mg pada penambahan 3,5% CaCO3.

ABSTRACT
Making bio calcium complex grease with NLGI grades (National Lubricating Grease Institute) # 2 is that having a semi-solid consistency will be added talc additives to improve the antiwear properties and reduce friction. Grease generated based palm oil and calcium complex soap as a thickening agent of his. The grease synthesis is performed by the stirring process, heating, and a saponification reaction at a maximum temperature of 165oC between calcium complex soap in situ in the oil RBDPO (Refine Bleach Deodorized Palm Oil) is epoxidized at a temperature of 65oC. Furthermore, the cooling and homogenization at 70°C, and the addition of additives talc varied composition: 0%, 2.5%, 5%, 7.5%, and 10% by weight of fat. Testing characteristics of bio grease produced include test consistency, dropping point test and four-ball test with a rotation speed of 1000 rpm. The variables contained in this research that the time and temperature during the process as well as a variable talc particle size control; talc additive composition as independent variables; the composition of base oil, thickener agent, and antioxidant additives BHT (Butylated Hydroxy Toluene) as well as the characteristics of the test results as the dependent variable. Best bio grease produced has the best antiwear properties on the addition of 2.5% Talc with the smallest amount of wear of 0.5 mg, dropping point at a temperature of 265oC. While previous research has produced the best grease has the amount of wear 0.7 mg on the addition 3.5% CaCO3.
"
2016
S63366
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwi Esthi Ariningtias
"Seiring dengan penambahan jumlah populasi penduduk dan peningkatan ekonomian di suatu wilayah, kebutuhan energi akan mengalami kenaikan. Provinsi Kalimantan Timur akan mengalami kekurangan energi listrik di beberapa daerahnya sehingga diperlukan pembangunan beberapa pembangkit listrik untuk memenuhi kebutuhan listrik. Dalam memenuhi kebutuhan gas yang akan digunakan dalam pembangkit listrik, diperlukan sumber-sumber gas baik dari lapangan-lapangan marjinal atau lapangan gas stranded.
Proses penyediaan gas dari lapangan gas stranded memerlukan skenario logistik yang optimal agar didapatkan biaya suplai yang minimal. Biaya suplai dalam rantai small scale LNG dipengaruhi biaya liquefaction, transportasi, regasifikasi dan distribusi. Optimasi logistik diperlukan untuk mendapatkan biaya suplai ke LNG Terminal paling rendah. Perhitungan optimasi ini dilakukan dengan menggunakan Solver, program di dalam Microsoft Excel yang memasukkan fungsi objektif, variabel bebas dan constrain.
Berdasarkan analisa dari hasil optimasi diperoleh skenario logistic terbaik untuk suplai gas ke PLN dari LNG Terminal 1 yaitu dengan metode milk-run memakai 2 unit kapal berkapasitas 12,000 m3, 1 unit tangki penyimpanan di LNG Terminal berukuran 5,000 m3.dan memakai truk untuk distribusi gas sedangkan ke PLN dari LNG Terminal 2 yaitu dengan metode hub and spoke memakai 1 unit kapal 10,000 m3, 1 unit tangki penyimpanan di LNG Terminal berukuran 7,500 m3.dan memakai truk untuk distribusi gas.
Dan dari hasil penelitian diperoleh biaya pengiriman dari Gas Plant ke LNG Terminal paling rendah yaitu dengan suplai gas dari LNG Plant 1. Untuk LNG Terminal 1 biaya pengiriman paling rendah dengan metode milk-run sedangkan LNG Terminal 2 dengan metode hub and spoke. Harga jual gas minimum ke PLN yaitu 12.64 USD/ MMBTU (Sanggata), 12.24 USD/ MMBTU (Bontang), 11.26 USD/ MMBTU (Melak), 10.93 USD/ MMBTU (Kaltim) dan 11.2 USD/ MMBTU (Kota Bangun).

Energy needs in a region will increase along with the escalation of its number of population and the level of the economy. East Kalimantan province will experience a shortage of electricity in some regions therefore several new power plants should be built to fulfill the electricity demands. To meet the needs of gas for power generation, source of the gas can be from marginal fields or stranded gas fields.
The supply process of gas from these stranded gas fields needs optimum logistic scenario so that minimum supply cost can be obtained. The cost of supply in small scale LNG is affected by the cost of liquefaction, transportation (shipping), LNG Terminal (regasification, jetty, storage tank) and distribution. Logistics optimization is acquired to get the lowest cost of gas supply to LNG Terminal.
Analysis of the optimization is completed with Solver, a program in Microsoft Excel that needs objective functions, decision variables and constrains. Based on the optimization, the best logistic scenario are as follows: To supply gas for PLN from LNG Terminal 1, the milk-run method is needed, employing 2 units of 12,000 m3ship, one of 5,000 m3 LNG storage tank at LNG Terminal and used trucks for distribution gas to Sanggata and Bontang. While to supply gas for PLN from LNG Terminal 2,the hub and spoke method is required, employing a 10,000 m3 ship, a 7,500 m3 storage tank at LNG Terminal and trucks to distribute the gas through Melak, Kaltim and Kota Bangun.
The calculation results are as follow: the lowest gas supplying cost from Gas Plant to LNG Terminal is obtained using gas from LNG Plant 1. The lowest cost of supply to PLN is 12.64 USD / MMBTU (Sanggata), 12.24 USD / MMBTU (Bontang), 11.26 USD / MMBTU (Melak), 10.93 USD / MMBTU (Kaltim) and 11.2 USD / MMBTU (Kota Bangun).
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T39007
UI - Tesis Membership  Universitas Indonesia Library
cover
Wisi Wilanda Syamsi
"ABSTRAK
Senyawa α-mangostin yang terkandung dalam ekstrak kulit manggis (Garcinia mangostana Linn.) diketahui memiliki sifat sitotoksik terhadap sel kanker. Isolasi senyawa mangostin dilakukan dengan pelarut etil asetat dan dihasilkan fraksi kaya mangostin sebagai bahan aktif untuk pelepasan terkendali pada sistem pencernaan. Sebelumnya telah dilakukan penelitian dengan berbagai variasi polimer. Dari penelitian tersebut, didapatkan bahwa penggunaan kitosan sebagai polimer penghantar α-mangostin dengan kombinasi sodium tripolifosfat menghasilkan efek penjeratan obat yang baik. Alginat sebagai agen penyalut mikropartikel berfungsi memperlambat proses pelepasan obat dari mikropartikel hingga mencapai organ target kolon. Penelitian ini bertujuan untuk mengetahui lebih jauh pengaruh rasio α-mangostin dan alginat dari mikropartikel kitosan terhadap efisiensi pemuatan obat dan profil rilis. Variasi yang dilakukan adalah konsentrasi α-mangostin dan alginat dalam mikropartikel kitosan. Perbandingan kitosan dan α-mangostin yaitu 1:0,1, 1:0,2 dan 1:0,3. Sedangkan rasio alginat yang divariasikan yaitu 0,1, 0,25, 0,5 dan 0,75. Hasil yang didapatkan menunjukan bahwa efisiensi pemuatan obat dan rilis terbaik terdapat pada sediaan mikropartikel dengan rasio α-mangostin 0,1 dan alginat 0,25.

ABSTRACT
Alpha-mangostin compounds in mangosteen peel extract (Garcinia mangostana Linn.) are known has antitumour properties and cytotoxic against cancer cells. Isolation of mangostin compound was using ethyl acetate solvent and resulting the fraction of α-mangostin as an active compound for controlled release in the gastrointestinal system. Previous studies have been conducted with a variety of polymers. From these studies, it was found that the use of chitosan as a conductive polymer α-mangostin in combination with sodium tripolyphosphate produces a good effect of drug entrapment. Alginate microparticles as a coating agent has function to slow down the process of drug release from microparticles until achieve the targeted organ. This study aims to determine the further effect of of α-mangostin and alginate ratio loaded onto chitosan microparticles in efficiency of drug loading and release profiles. Variation is done by concentration of α-mangostin and alginate in chitosan microparticles. Comparison of chitosan and α-mangostin is 1:0,1, 1:0,2 and 1:0,3. Whereas concentration of alginate is 1:0,1, 1:0,25, 1:0,5 and 1:0,75. The results show that the optimum efficiency of drug loading and drug release is in the preparation of microparticles with α-mangostin ratio of 0,1 and 0,25 alginate.
"
2015
S58726
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pangiastika Putri Wulandari
"ABSTRAK
Kebutuhan bahan pembersih yang terus meningkat dapat menyebabkan meningkatnya pencemaran lingkungan akibat penggunaan detergen komersial yang mengandung surfaktan bersifat toksik, seperti Sodium Lauryl Sulfate SLS , Linear Alkylbenzene Sulfonate LAS dan Sodium Laureth Sulfate SLES . Surfaktan Methyl Ester Sulfonate MES dapat mensubstitusi surfaktan toksik tersebut dalam detergen. Pembentukan MES dilakukan dengan esterifikasi dan transesterifikasi crude palm oil, sulfonasi, pemurnian, dan penetralan. Nanomaterial fotokatalis TiO2 ditambahkan sebagai bahan aditif untuk meningkatkan kinerja surfaktan dalam mengangkat kotoran dan mendegradasi senyawa organik. Variasi komposisi surfaktan MES dan TiO2 dilakukan untuk memperoleh kestabilan detergen. Teknik analisis data dalam penelitian ini adalah karakterisasi metil ester, surfaktan MES, dan detergen menggunakan instrumen spektrofotometer UV-Vis, FTIR, GC-MS, dan LC-MS. Kondisi optimum pada proses esterifikasi dan transesterifikasi adalah rasio mol 1:6 antara CPO dan metanol berdasarkan konversi tertinggi, yaitu 99 . Kondisi optimum proses sulfonasi adalah rasio mol 1:5 antara metil ester dan NaHSO3 berdasarkan nilai tegangan permukaan terendah, yaitu sekitar 36 dyne/cm . Komposisi detergen yang menunjukkan kestabilan terbaik adalah 0,1 TiO2-3 MES-2 CMC yang memiliki kemampuan mengangkat kotoran sekitar 86 dan sisa surfaktan dalam air sisa cucian menjadi sekitar 33.

ABSTRACT
The increasing need for cleaning agents can lead to increased environmental pollution due to the use of commercial detergents that containing toxic surfactants, such as Sodium Lauryl Sulfate SLS , Linear Alkylbenzene Sulfonate LAS and Sodium Laureth Sulfate SLES . The Methyl Ester Sulfonate MES surfactant may substitute the toxic surfactant in the detergent. The formation of MES is carried out by esterification and transesterification of crude palm oil, sulfonation, refining, and neutralization. The photocatalyst nanoparticle TiO2 is added as an additive to improve surfactant performance in removing impurities and degrading organic compounds. Variations of MES surfactant and TiO2 compositions were performed to obtain detergent stability. Data analysis technique in this research is methyl ester, MES surfactant, and detergent characterization using UV Vis spectrophotometer instrument, FTIR, GC MS, and LC MS. The optimum condition in esterification and transesterification process is 1 6 mole ratio between CPO and methanol based on the highest conversion, 99 . The optimum condition of the sulfonation process is the 1 5 mole ratio between methyl ester and NaHSO3 based on the lowest surface tension value, which is about 36 dyne cm. Detergent composition which showed the best stability was 0.1 TiO2 3 MES 2 CMC which has the ability to remove impurities by 86 and the remaining surfactant in residual water was 33."
2017
S67767
UI - Skripsi Membership  Universitas Indonesia Library