Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 121 dokumen yang sesuai dengan query
cover
Ari Maulana
"Baja karbon memiliki ketahanan korosi yang rendah. Biasanya dilakukan pelapisan pada permukaan baja karbon tersebut untuk melindunginya terhadap serangan korosi,. Salah satu material pelapis yang dapat diaplikasikan adalah senyawa intermetalik Fe-Al. Metoda-metoda pelapisan senyawa intermetalik Fe-Al yang telah digunakan sebelumnya dilakukan pada temperatur tinggi dan memerlukan waktu yang sangat lama. Selain itu, senyawa intermetalik Fe-Al memiliki kekuatan yang rendah pada lingkungan bertemperatur rendah dan sulit untuk melakukan pengubahan bentuk pada lingkungan bertemperatur tinggi.
Penelitian ini mempelajari pengaruh unsur Cr terhadap sifat fisik dan mekanik lapisan permukaan baja karbon yang terbentuk dari campuran serbuk Fe-50at.%Al melalui metoda pemaduan mekanik. Variabel yang digunakan adalah komposisi unsur Cr (0at.%Cr, 1at.%Cr dan 3at.%Cr) dan waktu penggilingan (4 jam, 8 jam, 16 jam dan 32 jam). Proses karakterisasi dilakukan terhadap lapisan permukaan baja karbon dan campuran serbuk Fe-50at.%Al dengan pengujian XRD, SEM-EDX dan kekerasan vickers.
Hasil penelitian menunjukkan bahwa proses pelapisan terjadi diawali dengan penghalusan serbuk, deformasi permukaan substrate, penguncian mekanik antara serbuk dengan substrate dan penebalan lapisan. Penambahan Cr cenderung meningkatkan ketebalan lapisan dengan ketebalan di atas 20 mikrometer. Akan tetapi, kekerasan lapisan tidak meningkat secara signifikan. Evolusi serbuk yang terjadi adalah terjadinya penghancuran partikel serbuk pada awal proses penggilingan yang diikuti dengan penggumpalan partikel serbuk pada akhir proses penggilingan. Evolusi lapisan yang terjadi adalah penebalan lapisan seiring dengan berjalannya waktu penggilingan. Akan tetapi, tidak terbentuk senyawa intermetalik Fe-Al baik pada serbuk maupun lapisan.

Carbon steel has low resistant to the corrosion attact. Usually the surface of the carbon steel is coated to protect it from corrosion attact. One of coating materials which can be applied is Fe-Al intermetallic compounds. Fe-Al intermetallic compounds coating methods which had been used before was done in high temperature and took a long time. Otherwise, Fe-Al intermetallic compounds have low strength in low temperature environment and difficult to change the form in high temperature.
This research studies the effect of chromium on the physical and mechanical properties of carbon steel surface coating which is formed of Fe-50at.%Al powder mixture by mechanical alloying. Variables which are used in this research are chromium composition (0at.%Cr, 1at.%Cr and 3at.%Cr) and milling time (4 hour, 8 hour, 16 hour and 32 hour). Characterization process was done by XRD, SEM-EDX and vickers hardness testing both on carbon steel surface coating and Fe-50at.%Al powder mixture.
The result of this research shows that the coating process is began by smoothing to the powder, surface deformation of substrate, mechanical interlocking between powder and substrate and thickening on the coating. The chromium addition tends to increase the thickness of the coating with the thickeness above 20 micrometer. However, the hardness of the coating was not increase significantly. Powder evolution that occurs is fracturing followed by aglomeration. Coating evolution that occurs is thickening to the coating all of the milling time. However, Fe-Al intermetallic compounds is not formed both in powder and substrate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41752
UI - Skripsi Open  Universitas Indonesia Library
cover
Dedi Irawan
"Die soldering merupakan hasil dari reaksi permukaan antara aluminium cair dengan material cetakan. Karena afinitas aluminium terhadap besi tinggi menyebabkan besi dari cetakan terdifusi kedalam aluminium cair dan membentuk lapisan intermetalik dari fasa binner Fe-Al dan ternary Fe-Al-Si di permukaan cetakan.
Penelitian ini dilakukan untuk mempelajari morfologi dan karakteristik yang terdiri dari ketebalan dan kekerasan lapisan intermetalik AlxFeySiz yang terbentuk selama proses pencelupan. Benda uji yang digunakan yaitu baja perkakas H13 hasil annealing, yang dicelup pada Al-12%Si dengan temperature tahan 680°C, 700 °C dan 720 °C dengan dilakukan penambahan unsur Mn yang berbeda-beda, yaitu 0.1%Mn, 0.3%Mn, 0.5%Mn, dan 0.7%Mn. Dalam penelitian ini, dihasilkan dua lapisan intermetalik pada masing-masing pencelupan.
Hasil penelitian menunjukan bahwa penambahan Mn akan menurunkan ketebalan compact layer pada fenomena die soldering. Pengaruh ini berlangsung sampai dengan penambahan kadar 0.1% Mn sampai dengan 0.7%Mn pada temperatur pencelupan 680°C, 700 °C dan 720 °C. Namun penambahan unsur Mn pada Al-12%Si tidak berpengaruh pada ketebalan broken layer. Kadar Al dan Fe yang terkandung pada compact layer berbeda dengan broken layer. Al akan lebih meningkat pada broken layer sedangkan Fe akan meningkat pada compact layer. Hal ini mempengaruhi kekerasan lapisan keduanya. Namun kadar Al dan Fe yang terkandung pada kedua lapisan intermetalik ini tidak dipengaruhi oleh penambahan unsur Mn.

Die soldering is the result of an interface between the molten aluminum and the die material. Due to high affinity that aluminum has for iron causes the iron from the steel diffuses into aluminum melt resulting in the formation of intermetalic layers of binary Fe-Al and ternary Fe-Al-Si phases on the die surface.
This research is done to study the mechanical and physical properties which consist of thickness and hardness the intermetallic layers formed during dipping test. The sample on this research is as anneal H13 tool steel that dipped into the molten Al-12%Si at dipping temperature 680°C, 700 °C,and 720 °C with different Mn content that is 0.1%Mn, 0.3%Mn, 0.5%Mn, and 0.7%Mn. This research resulted two intermetallic layers in the surface of H13 tool steel.
Result of research of showed that addition of Mn will reduce thickness of compact layer at die soldering phenomenon. This influence take place up to addition of rate of 0.1% Mn up to 0.7%Mn at dipping temperature 680°C, 700 °C and 720 °C. But addition of element Mn at Al-12%Si don't have an in with thickness of broken layer. Rate Al and Fe consisting in at compact layer differing from broken layer. Al would more increase at broken layer while Fe will increase at compact layer. This thing influence hardness of both layers. But rate Al and Fe consisting in at both this intermetallic layer be not influenced by addition of element Mn.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41749
UI - Skripsi Open  Universitas Indonesia Library
cover
Mohammad Kamiluddin
"Paduan Al-7wt%Si merupakan salah satu jenis paduan aluminium silikon yang memiliki aplikasi besar dalam dunia pengecoran khususnya proses die casting. Dalam aplikasi di dunia industri die casting terdapat problem yang disebut dengan die soldering. Die soldering adalah fenomena menempelnya aluminium cair pada permukaan material cetakan dan ada bagian benda casting yang tersisa ketika dikeluarkan dari cetakan. Reaksi die soldering biasanya terjadi pada pengecoran cetak tekan dengan tekanan tinggi dalam paduan aluminium dan membentuk lapisan intermetalik antara aluminium cair dan cetakan. Fenomena ini menyebabkan rusaknya cetakan serta mengakibatkan kualitas permukaan cetakan yang jelek, sedangkan biaya akan terus meningkat. Penelitian ini dilakukan untuk melihat karakteristik pembentukan ketebalan dan kekerasan dari lapisan intermetlic selama proses pencelupan.
Dalam penelitian ini, ditemukan adanya lapisan fasa binary dari lapisan intermetalik FeAl2, Fe2Al5, and FeAl3 yang ditemukan di permukaan baja. Penelitian ini bertujuan untuk mencari morfologi dan karakteristik dari lapisan AlxFeySiz yang meliputi ketebalan dan kekerasan selama proses pencelupan. Material cetakan untuk penelitian ini adalah baja perkakas H13 yang dicelup dengan Al-7wt%Si dengan temperatur holding 700°C, 720°C, dan 740°C serta penambahan mangan dengan 0.1, 0.3, 0.5, dan 0.7 %.
Dari hasil penelitian diperoleh bahwa penambahan mangan diatas 0.3% pada temperatur 700°C efektif menurunkan die soldering dari ketebalan lapisan 101 mikron sampai 86 mikron di kadar 0,5%Mn dan 54 mikron pada kadar Mn 0,7%. Fenomena tersebut juga terjadi pada temperatur 740°C. Sedangkan pada temperatur 720°C, penambahan Mn efektif menurunkan fenomena die soldering setelah penambahan 0.5%Mn.
Adapun kekerasan lapisan intermetalik sangat bervariasi, hal ini disebabkan karena ukuran kekerasan sangat tergantung terhadap kandungan paduan FexAly yang terdapat dalam lapisan. Semakin banyak kandungan Fe dalam paduan lapisan intermetalik FexAly, maka kekerasannya semakin meningkat, begitu juga sebaliknya. Dengan demikian, penambahan mangan terhadap Al-7wt%Si tidak mempunyai pengaruh yang signifikan terhadap kekerasan lapisan intermetalik.

Al-7wt%Si is one of aluminium alloys which have largest application in the world of casting, especially in die casting process. In the application of die casting technology, there is a dominant problem names die soldering. Die soldering is a phenomenon in which molten aluminium ?welds? to the die surface and remains there after the ejection of the part. Soldering reactions are commonly observed during high pressure die casting of aluminium alloys, and involve the formation and growth of interfacial intermetallic layers between the die and the cast alloy. This phenomenon resulting in damage to the die and poor surface quality of the casting, but increase the production cost. This research is done to study the thickness and hardness characteristic formation of the intermetallic layers during dipping test.
In this research, the appeared binary phase of intermetallic layer is FeAl2, Fe2Al5, and FeAl3 which available at steel?s surface. This research aim is investigating morphology and characteristic of AlxFeySiz intermetallic layer which consist thickness and hardness of the layer during immersing period. The testing material for this research is annealed tool steel H13 which is immersed at Al-7%Si with various holding temperature at 700°C, 720°C, and 740°C and also added by four types mangan (Mn) composition at each temperature. The compositions of this mangan are 0.1, 0.3, 0.5, and 0.7 %.
From the laboratory activity, it was clearly shown that additional Mn above 0.3% at 700°C can decrease die soldering effect significantly. This phenomenon can be seen from the intermetallic layer thickness formed with additional Mn at 101 to 86 micron for 0.5% Mn content and 54 micron for 0.7% Mn. This tendency is happen for 740°C reacting temperature also. But for 720°C reacting temperature, the effect of additional Mn for decreasing die soldering effect start from 0.5% Mn content.
Then, intermetallic layer formed are vary due to FexAly alloy content at layer itself. The more FexAly alloy content, the more hardness level formed; and vice versa. So that, additional Mn to Al-7wt%Si did not have significant effect to hardness of intermetallic layer formed due to spreading of random hardness level at each intermetallic layer.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41680
UI - Skripsi Open  Universitas Indonesia Library
cover
Iman Firmansyah Ika
"Logam busa merupakan material yang memiliki banyak rongga atau pori-pori sehingga banyak dipertimbangkan oleh para peneliti untuk diaplikasikan di dunia industri otomotif karena material ini memiliki sifat mekanis, termal, akustik, elektrik, dan kimia yang baik. Pembuatan logam busa dapat dilakukan dengan beberapa macam cara, salah satunya dengan cara menggunakan sinter dan pelarutan yang merupakan suatu proses pembentukan pori-pori pada logam dengan menggunakan jalur metode metalurgi serbuk.
Dalam penelitian ini menggunakan serbuk tembaga dan kalium karbonat sebagai bahan baku pembuatan tembaga busa. Perbedaan perbandingan antara logam dengan garam menghasilkan jumlah pori-pori yang berbeda sehingga mempengaruhi sifat fisis dan mekanis yang berbeda. Variabel yang digunakan dalam penelitian ini adalah persentase berat 60%, 50 %, 40 %, 30 %, 0 % kalium karbonat. Tiap variabel dikompaksi dengan tekanan 200 bar, lalu disinter pada temperatur 850 °C selama 2 jam dan setelah itu dilakukan proses pelarutan kalium karbonat dalam air hangat selama 2 jam. Kemudian untuk mengetahui sifat fisis dan mekanis pada tiap tembaga busa diuji porositas, densitas, kekuatan tekan dan dilakukan pengujian struktur mikro dengan menggunakan Scanning Electron Microscope (SEM) dan mikroskop optik.
Hasil dari penelitian ini berupa tembaga busa yang mempunyai ukuran pori-pori sebesar 197-928 µm. Densitas tembaga busa yang paling tinggi yaitu 2.75 gr/cm3 pada tembaga busa dengan persentase berat 30 % kalium karbonat dan yang paling rendah yaitu 1.28 gr/cm3 pada persentase berat 60 % kalium karbonat. Porositas tembaga busa yang paling tinggi yaitu 85.69 % pada persentase berat 60 % kalium karbonat dan yang paling rendah yaitu 69.29 % pada persentase berat 30 % kalium karbonat. Pada hasil pengamatan morfologi tembaga busa menunjukan bentuk pori-pori yang bulat dan memiliki jaringan koneksi antar pori. Hasil pengujian tekan menunjukan bahwa semakin tinggi persentase kalium karbonat dalam tembaga busa maka energi yang diserap oleh tembaga busa secara kualitatif semakin rendah.

Metal foams are materials which have many pores and are considered by the researchers to be applied in automotive industries because they have good mechanical, thermal, acoustic, electric, and chemical properties. The manufacturing of metal foams could be carried in several methods, one of these methods is to use lost carbonate sintering and dissolution process, which is a method to produce pores on metal by using powder metallurgy.
In this research, copper powder and potassium carbonate was used as raw materials for metal foam manufacturing. The ratio between metal and salt produced different amounts of pores that influenced their physical and mechanical properties. The ratio of potassium carbonate used in this research was 60%, 50%, 40%, 30%, and 0%. Each ratio were compacted with 200 bar pressure, and sinterized in 850°C for 2 hours, and then the potassium carbonate was dissolved in warm water for 2 hours. to investigate their physical and mechanical properties, on each copper were tested its porosity, density, compressive strength, and micro structural analysis were conducted by SEM and optical microscope.
The results of this research were copper foams with pores ranging from 197 ? 928 µm, the highest copper foam density was 2.75 gr/cm3on 30% potassium carbonate ratio, and the lowest was 1.28 gr/cm3 on 60% potassium carbonate density. The highest copper foam porosity was 85.69 % on 60% potassium carbonate, and the lowest was 69.29 % on 30% potassium carbonate. The morphology observation of the copper foams showed sphere-like pores and interconnected with each other. Compression test result showed that the higher potassium carbonate ratio on copper foams resulted in lower energy absorption by copper foams qualitatively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41761
UI - Skripsi Open  Universitas Indonesia Library
cover
Ery Kuswantoro
"Pelapisan pada baja karbon dilakukan untuk melindungi dari serangan korosi, khususnya korosi pada lingkungan oksidasi. Salah satu material yang dapat digunakan untuk melapisi baja karbon adalah senyawa intermetalik Fe-Al. Senyawa intermetalik Fe-Al memiliki ketahanan terhadap temperature tinggi, tahan sulfidisasi dan oksidasi, sehingga material ini cocok untuk menjadi bahan pelapis pada baja karbon.
Pada penelitian ini akan dilakukan proses pelapisan serbuk Fe-Al pada baja karbon dengan menggunakan metode pemaduan mekanik. Penelitian ini mempelajari pengaruh komposisi Al terhadap sifat mekanik lapisan permukaan baja karbon yang terbentuk dari campuran serbuk Fe-Al melalui metoda pemaduan mekanik. Variabel yang digunakan adalah komposisi unsur Al (30at.%Al 40at.%Al,50at.%Al dan 60%Al) dan waktu penggilingan (4 jam, 8 jam, 16 jam dan 32 jam). Proses karakterisasi dilakukan terhadap lapisan permukaan baja karbon dan campuran serbuk Fe-Al dengan pengujian XRD, SEM- dan kekerasan vickers.
Hasil penelitian menunjukan bahwa terbentuk lapisan paduan Fe-Al pada permukaan baja karbon pada waktu penggilingan 32 jam. Hasil penelitian menunjukkan bahwa pelapisan terjadi diawali dengan deformasi permukaan substrate, penghalusan serbuk, penguncian mekanik antara serbuk dengan substrate, dan penebalan serbuk lapisan akibat pengelasan dingin. Pelapisan dengan serbuk Fe-30at.%Al memiliki kekerasan mikro yang paling tinggi. Evolusi serbuk yang terjadi adalah terjadinya penghancuran partikel serbuk pada awal proses penggilingan yang diikuti dengan penggumpalan partikel serbuk pada akhir proses penggilingan.

Carbon steel usually coated to protect it from corrosion attack, especially from high temperature and oxidation environment. One of materials that can be used to coat carbon steel is intermetallic FeAl compound. Intermetallic FeAl compound has good resistance to oxidation, sulfidization and high temperature corrosion. So this material could be an effective coating for carbon steel.
This research will study coating process on carbon steel use mechanical alloying powder Fe-Al. This research studies the effect of aluminum addition Fe-Al powder mixture on the mechanical and physical properties coating which is formed by mechanical alloying. Variables which are used in this research are aluminum composition (30at.%Al 40at.%Al,50at.%Al and 60%Al) and milling time (4 hour, 8 hour, 16 hour and 32 hour). carbon steel surface coating and Fe-Al powder mixture was characterized by XRD, SEM and vickers hardness testing.
The result of this research shows that the coating process is began by surface deformation of substrate, refined of powder particle, mechanical interlocking between powder and substrate, and thickening the coating powder. Mechanical alloying which was use Fe-30at.%Al powder result the highest micro hardness of surface coating. Powder mikcrostructure evolution that occurs during milling is fracturing followed by aglomeration in 32 milling time. Intermetallic Fe3Al was also observed in mechanical alloyinh of Fe-30%at.Al powder.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41748
UI - Skripsi Open  Universitas Indonesia Library
cover
Ahmad Effendi
"Salah satu material yang sedang berkembang pada saat sekarang adalah logam busa. Logam busa memiliki ciri-ciri fisik yaitu memiliki pori-pori disetiap sisi logam. Logam ini sekarang memiliki potensial yang besar dalam aplikasi otomotif, konstruksi, dan industri kimia karena memiliki beberapa sifat mekanis yang baik diantaranya daya serap energi yang tinggi, memiliki berat yang ringan, dan kekakuan spesifik yang tinggi. Pembuatan logam busa dapat dilakukan dengan beberapa metode. Salah satunya adalah dengan proses sinter dan pelarutan garam (Sintering and Dissolution Process) dengan metode metalurgi serbuk konvensional.
Penelitian yang dilakukan menggunakan serbuk aluminium dengan garam NaCl. Variabel yang digunakan adalah fraksi berat garam dengan nilai 0%, 30%, 50%, 70%, dan 90%. Perbedaan variabel ini akan menghasilkan jumlah pori yang berbeda dan sifat mekanis yang berbeda. Dalam proses pembuatan, serbuk-serbuk tersebut dicampur hingga merata kemudian dikompaksi dengan tekanan 250 bar dan disinter pada temperatur 670°C selama 2 jam. Setelah itu dilakukan pelarutan garam dengan menggunakan air pada temperatur ±65°C selama kurang lebih 2 jam. Untuk mengetahui karakteristik dan sifat mekanis logam busa dilakukan pengujian kuat tekan, pengujian densitas dan porositas, serta pengamatan struktur makro dan mikro (dengan SEM).
Hasil yang didapat pada penelitian ini bahwa pori-pori yang dihasilkan pada aluminium busa sebesar 45,92-350,80 µm dengan persentase porositas yang dihasilkan sebesar 16,71% pada 0% garam hingga 91,70% pada 90% garam. Densitas tertinggi didapat pada 0% garam sebesar 2,25 gram/cm3 sedangkan densitas terendah didapat pada 90% garam sebesar 0,22 gram/cm3. Hasil pengujian kuat tekan menunjukkan dengan meningkatnya porositas (penurunan tegangan tekan) maka energi yang diserap lebih tinggi dan kurva uji tekan semakin landai. Hasil pengamatan mikrostruktur dengan SEM menunjukkan besar pori yang terdistribusi secara merata pada fraksi garam 50%, 70%, dan 90% dengan bentuk pori yang tidak beraturan.

Metallic foam is one of advanced the material recently developed. It has a physical pores cells on every single side material. Metallic foams have great potential for wide applications in the transportation, construction and chemical industries because of their good mechanical properties like heavy energy absorbers, their lightweight, and high specific strength and stiffness. There are some methods in manufacturing metallic foams. Sintering and Dissolution Process (SDP) is one of the methods of conventional powder metallurgy route to produce metallic foam.
This experiment used a powder aluminium and sodium chloride as raw materials. Sodium chloride used as variable ratio with the specific amounts are 0%, 30%, 50%, 70%, and 90%. The difference of variables will produce the differences amounts of porosity and physical properties. The mixture of Al/NaCl powders were compacted at 250 bar, and then sintered at 670°C for 2 hours. And then sodium chloride was removed by dissolution process in warm water for around 2 hours. To investigate the characteristics and the mechanical properties, aluminium foam were tested its compressive strength, percentage of porosity and density, and macrostructure and microstructure analysis by using Scanning Electron Microscope (SEM).
The results of this experiment shows that the pore size of aluminium foam were in the range of 45,92-350,80 µm and the percentage of porosity were 16,71% on 0 wt% NaCl until 91,70% on 90 wt% NaCl. The highest density on 0 wt% was 2,25 gram/cm3 and the lowest density on 90 wt% was 0,22 gram/cm3. In compressive strength behaviour performs in increasing the porosity (decreasing compressive stress), the capability in absorbing the energy increased and the curve of stressstrain becomes slope gently. In microstructure analysis by SEM performs the pore cells distributed spread flat on fraction 50%, 70%, and 90% within the morphology of pores irregular.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41760
UI - Skripsi Open  Universitas Indonesia Library
cover
R. Ariosuko Dh
"Logam busa merupakan klas material relatif baru sejak dikenalkan di penghujung tahun 1990-an. Logam busa dapat difabrikasi dengan banyak cara, namun semuanya merupakan muara dari dua metode, yakni metode cair dan metode padat. Pembuatan dari bahan serbuk termasuk metode padat, sebagaimana digunakan di penelitian ini, dikombinasi dengan proses pelarutan bahan pengisi. Serbuk utama adalah Cu-15Zn (kuningan), dan bahan pembentuk pori yang digunakan adalah Potassium carbonate (K2CO3) dan Silica Gel (SiO2). Morfologi logam busa ini termasuk ukuran pori, dicoba dikontrol dengan variasi ukuran butir pengisi dan dua skema sinter.
Penelitian ini menggunakan 4 variabel ukuran bahan pengisi; 2,650 mm (SiO2 dengan fraksi massa 30%), serta 840, 542, dan 420 μm (K2CO3 dengan fraksi massa 60%). Setiap bakalan hasil pencampuran dikompaksi dengan tekanan 20 MPa (200 bar) selama 2,5 menit. Diikuti oleh dua skema proses sinter, yaitu 12 sampel dengan temperatur 900ºC selama 45 menit (skema S1) dan 12 sampel dengan skema 850ºC selama 1 jam (skema S2), dengan atmosfir gas nitrogen. Pengisi potassium carbonate dilarutkan dengan air hangat (~65ºC) selama 2 jam dengan cara diaduk secara magnetik, sedangkan pengisi silica gel direndam dalam larutan asam hidrofluorida (HF) dengan konsentrasi 25%.
Hasil karakterisasi produk logam busa; dihasilkan ukuran pori dengan rata-rata penyusutan 25%. Terbentuk berbagai jenis pori; pori terhubung (interkonek), pori tertutup, dan pori terbuka. Bentuk sel cenderung bulat mengikuti bentuk pengisi, terdiri dari jenis sel tertutup di sebagian permukaan dan jenis sel terbuka di sebagian besar permukaan. Densitas produk di kisaran ~1,3 g/cm³ untuk pengisi potasium semua ukuran dan ~1,73 g/cm³ untuk pengisi silica gel. Porositas di kisaran ~81% untuk pengisi potasium dan ~76% untuk pengisi silica gel. Dari dua skema sinter, semuanya menghasilkan fasa paduan Cu-15Zn. Konduktivitas listrik hasil skema sinter S1, tertinggi 1,93 [mΩ.m]^-1 pada sampel hasil pembentukan pengisi 0,542 mm, terendah 1,34 [mΩ.m]^-1 hasil pembentukan pengisi 0,841 mm.

Metal foam represents a new class of material, since introduced in the end year of 1990. Metal foam can be fabricated variously, but altogether have just 2 path, namely melt and solid fabrication. Fabrication from powder is one of solid fabrication band which is used in this research, joined with dissolution of filler substance. The main powders are Cu-15Zn, the fillers are potassium carbonates (K2CO3) and silica gel (SiO2). The morphology of porous including pore size tried to be controlled by variation of fillers diameter and sintering schemes.
Filler substances are classified into 4 particles size, those are 2.650 mm (30% mass fraction of SiO2) and 840 μm, 542 μm, and 420 μm (60% mass fraction of K2CO3). Each mixture was then compacted with same pressure of 20 MPa ( 200 bar), followed by two sintering schemes, those are 12 samples in 900ºC for 45 minutes (S1 and 12 others samples in 850ºC for 1 hour (S2). The dissolution process of potassium carbonates filler was undertaken in warm water (~65ºC) for 2 hours by magnetic stierring, and silica gel dissolved by soaking in hidrofluorida (HF) acid solution by 25% of concentration.
Macrostructure with cell shape tend to circular similar to the shape of fillers. Size shrinkage was observed about ~25% compare to initial filler size. Various pore morphology are formed in i.e. ; interconnected pore, closed pore, and open pore. The densities of metal foams were around ~1.3 g/cm³ for potassium carbonate fillers on all granular size and around ~1.73 g/cm³ for silica gel filler. Porosities were around ~81% for potassium carbonates fillers and ~76% for silica gel fillers. Almost all the samples have Cu-Zn alloys phase. It meant that the sintering schedule are suitable enough for alloying. The smallest electrical conductivity for sinter scheme S1, were 1.93 [mΩ.m]^-1 from filler size 0.542 mm. The largest were 1.34 [mΩ.m]^-1 from 0.841 mm filler size.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T27086
UI - Tesis Open  Universitas Indonesia Library
cover
Prima Sony
"Beton aerasi memiliki keunggulan pada densitasnya bila dibandingkan dengan beton biasa. Dengan densitas yang rendah, beton aerasi dapat menghemat biaya dalam sebuah konstruksi seperti perumahan, gedung, dan jalan. Beton aerasi yang sudah diproduksi saat ini adalah beton aerasi dengan proses autoclave untuk proses pematangannya. Proses autoclave cenderung membutuhkan energi dan biaya untuk peralatan yang tinggi, oleh karena itu untuk menekan biaya produksi, dikembangkanlah pembuatan beton aerasi tanpa proses autoclave (NAAC). Sebagai salah satu dari bahan baku utama pembuatan beton aerasi, kapur yang ditambahkan mempengaruhi sifat fisik dan mekanik dari beton aerasi. Penelitian ini difokuskan untuk mengetahui pengaruh penambahan kapur terhadap sifat fisik dan mekanik pada NAAC Penelitian tentang pengaruh penambahan kadar kapur ini meliputi pengujian densitas, kekuatan tekan, struktur makro, struktur mikro dan komposisi kimia. Kadar kapur yang digunakan adalah 12.5 %, 25 %, 37.5%, 50% dan 62.5% dari jumlah semen yang digunakan. Proses pematangan dilakukan pada ruangan terbuka dengan temperatur kurang lebih 27_C. Dari penelitian yang dilakukan, telah dihasilkan beton aerasi dengan rentang densitas 968,25 kg/m3 ? 1163,27 kg/m3 (beton ringan memilki densitas dengan rentang 640 -1600 kg/m3). Densitas terendah, didapat dari sampel kadar kapur 50% kapur dengan nilai 968,25 kg/m3. Kekuatan tekan tertinggi diperoleh dari sampel 25% kapur dengan nilai 3,48 MPa. Secara umum terjadi reaksi antara kapur, semen dan agen pengaerasi yang membentuk pori-pori untuk menurunkan nilai densitas. Pengaruh kapur lebih ke arah kekuatan tekan dengan pembentukan fasa kalsium silikat hidrat.

Aerated concrete has advantage of its density compared with regular concrete. With the low density, aerated concrete can reduce the cost of a construction such as home, building and road. Generally, aerated concrete has been produced with curing process in the autoclave. Curing process in the autoclave needs high energy and cost for equipment investment. Therefore, aerated concrete without curing process in the autoclave has been developed. As an important raw material of the aerated concrete, lime may effect aerated concrete physical and mechanical properties. Thus, this study aims to examine the effect of lime addition to the physical and mechanical properties of Non Autoclave Aerated Concrete (NAAC). The examination of this study consist of density, compressive strength, macrostructure, microstructure and chemical composition test from the sample. Lime content in the sample varied from 12.5 % to 62.5% of the cement content. Curing process was conducted in room pressure and temperature(1 atm and 27_C). The result shows that NAAC was succesfully produced with the density range of 968,25 kg/m3 ? 1163,27 kg/m3(aerated concrete had density range about 640 - 1600 kg/m3). The lowest density of the NAAC was achieved with 50% lime content addition. On the other hand, the highest compressive strength NAAC was reached by addition of 25% lime content. Generally, the reaction among lime, cement and aerating agent form the pores in concrete. The presence of pores can decrease the density of concrete. Lime addition tends to affect the compressive strength with the Calsium Silicate Hydrate formation."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41705
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indro Baskoro
"Logam busa dalam dekade terakhir ini mulai menjadi perhatian bagi para peneliti dan industri otomotif. Hal ini karena logam busa memiliki rasio kekakuan dan berat yang baik, daya serap energi, serta daya redam getaran yang baik pula. Sifat ini didapatkan dari pori yang ada pada logam busa tersebut. Salah satu cara membuat logam busa adalah dengan Sintering and Disolution Process (SDP). SDP ini melibatkan proses metalurgi serbuk terhadap campuran serbuk logam dan garam yang digunakan. Hasil dari proses metalurgi serbuk kemudian dilakukan pelarutan garam, sehingga terbentuk pori.
Tujuan penelitian ini adalah untuk mendapatkan gambaran mengenai kondisi optimum proses SDP untuk logam Al-4Cu (1,73 %at), serta mengetahui karakteristik dari logam busa yang dihasilkan. Penelitian ini menggunakan material Al-4Cu (1,73 %at) dan garam NaCl. Penelitian ini menggunakan variabel fraksi berat garam 0%, 10%, 30%, 50%, 70%, dan 90%. Campuran tersebut diproses metalurgi serbuk dengan tekanan kompaksi 300 Bar dan temperatur sinter 660_C selama 120 menit. Kemudian sampel direndam dalam air hangat selama 120 menit untuk melarutkan garam NaCl.
Sampel hasil pelarutan dilakukan pengujian densitas dan porositas, kuat tekan, mikrostruktur serta SEM untuk mengetahui karakteristiknya. Logam busa hasil penelitian memiliki karakteristik, densitas tertinggi 1,59gr/cm3 (densitas relatif 0.57 gr/cm3) didapat dari campuran 10% garam dan terendah 0,7 gr/cm3 (densitas relatif 0.25 gr/cm3) dari campuran 70% garam. Porositas tertinggi 74,8 didapat dari campuran 70% garam, terendah 42,81% dari campuran 10% garam.
Pada pengujian kuat tekan, nilai tertinggi adalah dimiliki campuran 10% dengan 30,946 MPa, terendah 0,293 Mpa dimiliki campuran 70%. Pada kurva kuat tekan, dengan semakin tinggi persentase porositas, kemampuan logam busa untuk menyerap energi akan semakin baik. Pengamatan struktur mikro dan SEM didapatkan bahwa morfologi pori yang terbentuk mengikuti morfologi garam NaCl yang dipakai, yaitu berbentuk kubik dengan ukuran dalam rentang 66,67 - 866,67 _m. Namun dari parameter proses yang digunakan masih belum optimal. Salah satunya adalah temperatur sinter. Pada temperatur 660_C Al cair akan keluar membentuk tetesan (droplet). Hal tersebut menandakan bahwa temperatur sinter terlalu tinggi.

In the last decade metallic foam became the attention for researcher and automotive industry. It is caused by its good stiff-to-weight ratio, energy absorption, and damping insulation. These properties are the results of its pores all over the materials. The manufacturing of metallic foam could be carried by Sintering and Dissolution Process (SDP). SDP involve powder metallurgy process toward mixed powder of metal and salt. Then the precursor is carried away in the dissolution process in order to create pore structure.
The aim of this experiment is to describe the optimum conditions of SDP in producing Al-4Cu (1,73 %at) foam, and to observe about the characteristic of metallic foam. Al-4Cu (1,73 %at) powder and sodium chloride used as a raw material in this experiment. The variable used are 0%, 10%, 30%, 50%, 70%, and 90% wt% of salt. The mixed powder then compacted for 300 Bar, and sintered at 660_C for 120 minutes. The burn compact then submerged in the hot-stream water for 120 minutes to remove the sodium chloride.
To investigate physical and mechanical properties of Al-4Cu (1,73 %at) foams, their density, porosity, compressing behavior, and microstructure were tested, by optical microscopy and Scanning Electron Microscopy (SEM). For metallic foam the highest density (1,59gr/cm3) was obtained by 10 wt% NaCl, while the lowest (0,7gr/cm3) was obtained by 70 wt% NaCl. 74,8% was the highest porosity obtained by 70 wt% NaCl and the lowest one was obtained by 10 wt% NaCl. The highest compression strength 30,946 MPa was obtained by 10 wt% NaCl, while the lowest 0,293 MPa was obtained by 70 wt% NaCl.
From the compressing behavior, it was indicated that with increasing amount of pore, the capability of metallic foam to absorb the energy increased. Meanwhile, it was found in the microstructure, that the cell morphology of the final Al foam closely matched those of the NaCl particles. Which is cubic-shaped with the size range of 66,67 - 866,67 _m. But, from the parameters used in the powder metallurgy process are still not optimum yet. The sintering temperature used in this experiment was still exceedingly the optimum temperature. At 660_C liquid Al will ooze out of the surface of the compacts in the form of globules.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41738
UI - Skripsi Membership  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>