Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Juniarto Matasak Palilu
"Saat ini ada kendala dalam pengadaan semen khusus yang sesuai untuk dijadikan bahan penyekat sumur injeksi CO2 pada Carbon Capture and Storage (CCS). Semen Kelas-G merupakan bahan dasar yang dapat dimodifikasi sehingga sesuai untuk penggunaan pada sumur injeksi CO2 di mana dalam bentuk suspensi semen dan air banyak digunakan untuk penyekat ruang anulus pada sumur minyak dan gas bumi. Suspensi semen berbahan semen Kelas-G mengalami penyusutan volume selama proses pengerasan. Hal ini merupakan salah satu kekurangan semen Kelas-G jika diaplikasikan tanpa modifikasi. Selain itu semen Kelas-G cenderung terdegradasi apabila berada di lingkungan air dengan kandungan CO2 tinggi. Pada penelitian ini, semen Kelas-G dimodifikasi dengan menambahkan aditif mengembang (swelling) CaO dan MgO untuk mengatasi penyusutan volume dan degradasi tersebut. Selain itu, silica flour sebagai supplementary cementitious material dipergunakan juga dengan komposisi 35% by weight of cement (BWOC) sebelum ditambahkannya aditif tersebut. Penelitian ini bertujuan untuk meneliti dampak penambahan aditif tersebut di atas terhadap perubahan ketahanan korosi dan kekuatan mekanik suspensi semen di lingkungan air dengan kandungan CO2 tinggi. Pembuatan sampel dilakukan di laboratorium dengan variasi komposisi aditif (5%, 10%, 15%, dan 20% BWOC) temperatur cure (26°C dan 50°C) dan waktu cure sebelum uji korosi (1 hari dan 7 hari). Untuk mensimulasikan kondisi air dengan kandungan CO2 tinggi, sampel dibenamkan di dalam air tersaturasi CO2 di dalam autoclave bertekanan 2,0684 MPa dan temperatur 50°C selama 14 hari. Selain uji korosi, dilakukan juga pengujian X-Ray Diffraction, Scanning Electron Microscopy/Energy-Disperse X-ray Spectroscopy, Scanning Electron Microscopy, Laser Particle Size Analyzer, Uniaxial Expansive/Shrinkage, Ultrasonic Cement Analyser, Three Point Bending Test, dan Macro Photo Imaging. Hasil percobaan menunjukkan bahwa penambahan aditif CaO (komposisi 5%, 10%, 15%, dan 20% BWOC) dan MgO 20% BWOC dapat mencegah penyusutan volume pada suspensi semen Kelas-G. Peningkatan ketahanan korosi tertinggi terjadi pada sampel SC15(1d-26C) yakni sebesar 70,50%. Peningkatan kekuatan mekanik tertinggi terjadi pada sampel SC5(1d-50C) yakni sebesar 43,82%. Peningkatan ketahanan korosi tertinggi akibat penambahan aditif MgO terjadi pada SM20(7d-50C) sebesar 61,93% dan peningkatan kekuatan mekanik tertinggi pada SM10(7d-50C) sebesar 10,58%.

Currently there are obstacles in the procurement of special cement that is suitable to be used as an insulating material for CO2 injection wells in Carbon Capture and Storage (CCS). Class-G cement is a base material that can be modified so that it is suitable for use in CO2 injection wells where in the form of a cement and water suspension it is widely used to insulate the annulus spaces in oil and gas wells. Cement suspensions made from Class-G cement experience volume shrinkage during the hardening process. This is one of the disadvantages of Class-G cement when applied without modification. In addition, Class-G cement tends to degrade when exposed to water with high CO2 content. In this study, Class-G cement was modified by adding swelling additives (swelling) CaO and MgO to overcome the volume shrinkage and degradation. In addition, silica flour as a supplementary cementitious material is also used with a composition of 35% by weight of cement (BWOC) before adding the additive. This study aims to examine the impact of the addition of the above additives on changes in corrosion resistance and mechanical strength of cement suspensions in water environments with high CO2 content. Sampling was carried out in the laboratory with various additive compositions (5%, 10%, 15%, and 20% BWOC), cure temperature (26°C and 50°C) and cure time before corrosion test (1 day and 7 days). To simulate water conditions with high CO2 content, the sample was immersed in CO2-saturated water in an autoclave at a pressure of 2.0684 MPa and a temperature of 50°C for 14 days. In addition to the corrosion test, X-Ray Diffraction, Scanning Electron Microscopy/Energy-Disperse X-ray Spectroscopy, Scanning Electron Microscopy, Laser Particle Size Analyzer, Uniaxial Expansive/Shrinkage, Ultrasonic Cement Analyser, Three Point Bending Test, and Macro Photo tests were also conducted. Imaging. The experimental results showed that the addition of CaO additives (composition of 5%, 10%, 15%, and 20% BWOC) and MgO 20% BWOC could prevent volume shrinkage in Class-G cement suspensions. The highest increase in corrosion resistance occurred in the SC15 (1d-26C) sample, which was 70.50%. The highest increase in mechanical strength occurred in the SC5 (1d-50C) sample, which was 43.82%. The highest increase in corrosion resistance due to the addition of MgO additives occurred at SM20(7d-50C) by 61.93% and the highest increase in mechanical strength at SM10(7d-50C) by 10.58%."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Rusman Kosasih
"Efisiensi produksi di Industri Casting alumunium untuk komponen otomotif saat ini hanya berada di angka 65%, dari target 85%. Ke tidak efisien an terbesar adalah adanya waktu produksi yang hilang akibat kerusakan pada cetakan, yaitu sekitar 14%. Masalah utamanya adalah Over heat, Insert pin rusak/ patah, dan kesulitan pergantian cetakan. Kerusakan Insert pin yang terbuat dari material SKD61 menyebabkan terhentinya proses produksi dalam waktu yang cukup lama (lebih dari 4 jam produksi), akan mengakibatkan penurunan produktifitas yang signifikan bagi pabrikan.
Pulsed Laser Deposition (PLD) adalah teknik pelapisan khusus untuk deposisi uap secara fisik (PVD) yang menggunakan plasma yang dibentuk oleh interaksi antara sinar laser dan bahan target. PLD saat ini digunakan untuk menghasilkan film tipis berkualitas tinggi untuk superkonduktor, lapisan listrik, aplikasi medis, lapisan magnet, dan lapisan coating. Penelitian ini merupakan rangkaian penelitian PLD yang bertujuan untuk menemukan coating terbaik dengan PLD yang dapat meminimalkan kerusakan pada insert pin baja perkakas berbahan SKD61 yang digunakan sebagai komponen cetakan pada pabrik Alumunium Die Casting. Penyebab utama kerusakan Pin SKD61 adalah terjadinya fenomena Die soldering pada permukaan pin yang bersentuhan dengan alumunium cair pada kecepatan aliran yang tinggi. Cara yang paling efektif saat ini untuk mengatasi die soldering adalah melapisi permukaan dies dengan material coating, sehingga meminimalkan terjadinya kontak langsung antara material alumunium dengan cetakan. Lapisan coating yang baik didapatkan dari pemilihan material coating yang tepat, dan penggunaan metode coating yang maksimal.
Material Al, Ti, dan gas N2 digunakan sebagai bahan pelapis dikarenakan kemampuannya untuk mencegah terjadinya soldering dengan menaikkan temperature kritis terjadinya soldering. Pemakaian komposisi AlTi 50/50, AlTi 40/60 dan AlTi 30/70 digunakan untuk melihat pengaruh kandungan Ti terhadap hasil coating. Pada metode PLD digunakan laser Nd:YAG Q switch dengan panjang gelombang 532 nm dan 1064 nm dan energi 50 mJ sampai 140 mJ. Sedangkan tekanan pada ruang vakum berkisar 1,16 -1,35 Torr, yang dilengkapi dengan gas N2 uhp. Selanjutnya hasil coating di annealing pada temperatut 6000 C pada kondisi vacuum dengan gas inert Nitrogen UHP selama 2 jam. Karakterisasi secara kualitatif dan kuantitatif dilakukan menggunakan Scanning Electron Microscope – Energy Dispersion Spectroscopy (SEM - EDS), Field Emission Scanning Electron
Microscope (FESEM), Hardness tester, Surface tester dan Projector profile. Simulasi dan Uji Aplikasi pada cairan aluminium ADC12 juga dilakukan di bagian produksi Casting PT X untuk membuktikan hasil uji Laboratorium pada kondisi produksi sebenarnya di temperature cairan Al 6500 C~6800 C dan waktu proses 60 detik.
Lapisan yang dihasilkan memiliki morfologi partikel Al-Ti-N amorf berukuran 10-20 nm dengan kekerasan permukaan dalam kisaran 333-384 mHv, dan setelah anil terjadi peningkatan kekerasan dalam kisaran 410 - 455 mHv Hasil coating terbaik dalam penelitian ini diperoleh pada penggunaan Panjang gelombang 1064 nm dan energi 120 mJ dengan lama deposisinya 20 menit pada frekuensi 10 Hz. Kekerasan permukaan memiliki hubungan yang erat dengan kandungan% Ti dan pemberian gas N2 pada proses PLD. Semakin tinggi % Ti cenderung menurunkan kekerasan permukaan coating karena gumpalan yang semakin banyak tapi tidak merata, sedangkan gas N2 memungkinkan terbentuknya senyawa nitride AlTiN yang menaikkan kekerasan permukaan. Kenaikan % Ti, relatif tidak berpengaruh terhadap tingkat adhesivitas. Proses anil meningkatkan kekerasan dan kekasaran, sedangkan tingkat adhesivitas kurang terpengaruh. Tingkat adhesivitas dari riset ini dipengaruhi oleh keberadaan gas N2 yang membentuk senyawa AlTiN yang lebih adhesive dari senyawa AlTi. Pengujian simulasi dan aplikasi menunjukkan bahwa pin dengan lapisan PLD AlTiN dapat memperpanjang umur tool dua kali hingga ketiga kalinya daripada pin standar. Umur insert pin PLD adalah sekitar 60.000 injeksi. Sedangkan umur insert pin standar hanya 20.000 injeksi. Hasil ini diharapkan dapat menjadi acuan untuk penelitian lebih lanjut dengan penambahan seperti pemanas pada substrat dan sistem holder substrat yang disesuaikan dengan bentuk substrat untuk memperoleh optimasi dari proses PLD.

The aluminum casting industry for automotive components achieves only 65% of the targeted 85% production efficiency. Approximately fourteen percent of production time is wasted due to mold damage. Overheating, damaged/broken Insert pins, and difficulty changing molds are the primary issues. Damage to an insert pin made of SKD61 material causes the production process to be stopped for an extended period of time, as changing pins, repairing, and replacing molds requires the use of special techniques to protect the mold, the product components, and the safety of maintenance personnel. Extended stops in the production process (more than four hours) will result in a significant decrease in the manufacturer's productivity.
Pulsed Laser Deposition (PLD) is a particular kind of physical vapour deposition (PVD) that utilises plasma generated by the interaction of laser light and the target material. Today, PLD is used to create high-quality thin films for superconductors, electric layers, medical applications, magnetic layers, and resistant coatings. This round of of PLD research aims to identify the most effective PLD coating for minimised damage to SKD61 tool steel instruments used in Aluminium Die Casting manufacturing. Die soldering, which occurs when the pin's surface comes into contact with molten aluminium at rapid flow rates, is the primary cause of injury to the SKD61 Pin. The most effective approach to die soldering is to protect the surface of the die with a coating material, thereby minimising direct contact between the aluminium and mould. The selection of a suitable coating material and the application of the optimum coating method results in the formation of an excellent coating layer.
Al, Ti, and N2 gas are utilised as coating materials due to their ability to prevent soldering by raising the soldering temperature critical point. AlTi 50/50, AlTi 40/60, and AlTi 30/70 were used to determine the effect of Ti percentage on coating performance. The PLD technique applies a Nd: YAG Q switch laser with a wavelength between 532 nm and 1064 nm and an energy with 50 mJ up to 140 mJ. While the vacuum chamber's pressure ranges from 1.16 to 1.35 Torr, it is equipped with UHP N2 gas. In addition, the coating results were annealed for two hours at 600 degrees Celsius under vacuum conditions with UHP Nitrogen inert gas. Using Scanning Electron Microscope – Energy Dispersion Spectroscopy (SEM-EDS), Field Emission Scanning Electron Microscope (FESEM), Hardness tester, Surface tester, and Profile projector, qualitative and quantitative characterization was carried
out. Simulation and Application tests in ADC12 Alumunium molten have also been conducted at casting section PT X to validate the Laboratory test result under actual production conditions of 650o C to 680o C and a 60-second cycle time.
The surface coatings have morphology of amorphous Al-Ti-N particles varying in size from 10 to 20 nm, with surface hardnesses between 333 and 384 mHv; after annealing, the hardness increases around 410 and 455 mHv. In this study, the best coating results were obtained with a wavelength of 1064 nm, an energy of 120 mJ, a deposition time of 20 minutes, and a deposition frequency of 10 Hz. N2 gas causes the formation of AlTiN nitride compounds, which increase the surface hardness, whereas an increase in the percent of Ti decreases the surface hardness of the coating due to an increase in agglomerate in a surface area. The increase in percent Ti has no significant impact on the intensity of adhesion. The annealing procedure increases hardness and surface roughness while adhesion is affected less. The presence of N2 gas, which generates AlTiN compounds that are more adhesive than AlTi compounds, affects the adhesiveness of this research. Simulations and application tests indicate that a pin with a PLD AlTiN coating can double or triple the tool life of a standard pin. A PLD pin has a tool life of approximately 60,000 shots, whereas a standard pin only has a tool life of 20,000 shots. To optimize the PLD process, these findings are anticipated to serve as a reference for future research involving modifications such as substrate heaters and a substrate holder system
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library