Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 12 dokumen yang sesuai dengan query
cover
Slamet
"Indonesia adalah negara yang kaya akan bahan tambang bauksit, akan tetapi sampai sekarang bauksit tersebut hanya diekspor dalam bentuk bahan tambang. Di lain pihak industri petrokimia, industri proses gas alam, industri pupuk, dan industri perminyakan yang ada di Indonesia masih mengimpor kebutuhan akan gamma alumina (γ A1203). Gamma alumina yang secara luas digunakan sebagai penyangga katalis pada reaksi-reaksi kimia, membran pemisah dan adsorben dapat disintesis dari bahan baku bauksit Indonesia.
Proses sintesis gamma alumina dari bauksit meliputi beberapa tahap yaitu: pemasakan bauksit, pengendapan/presipitasi, konversi aluminum hidrat dengan struktur gibsitte ke bentuk struktur boehmile/pseudoboehmile, dan kalsinasi. Keberhasilan proses sintesis yang ditempuh dibuktikan dengan karakterisasi terhadap produk disetiap tahapan. Keaktifan gamma alumina yang dihasilkan diuji melalui aplikasinya sebagai penyangga katalis nikel untuk reaksi reformasi kukus, suatu reaksi utama yang terjadi di unit reformer pada industri-industri pupuk.
Pengolahan bauksit alam yang telah dilakukan dapat menghasilkan alumina teraktifkan (γ -A1203) 20,39 gram dad bahan bauksit 100 gram melalui temperatur kalsinasi 800°C, dengan luaas permukan 110 m2/g. Hasil karakterisasi XRD mengidentifikasikan bahwa produk akhir alumina teraktifkan dari proses sintesis yang dilakukan adalah gamma alumina (γ -A1203), seperti yang ditunjukan dengan munculnya peak pada sudut 20: 66,3; 45,707; 38,445; dan 36,494. Hasil kerakterisasi FTIR, mengidentifikasikan bahwa pada gamma alumina masih terdapat sedildt pengotor silika.
Katalis 0,5 gram 13% Ni/ γ Al2O3 diuji aktivitas dan stabilitasnya untuk reaksi reformasi kukus (H20/CH4), suatu reaksi utama yang terjadi di unit reformer pada industri-industri pupuk. Kondisi operasi yang digunakan adalah laju umpan total 220 ml/menit, rasio Steam/CH4 = 4, gas inert Ar = 120 ml/menit, temperatur reaksi 800-900°C, dan tekanan I atm. Hasil uji tersebut menunjukkan bahwa selama 9 jam katalis Ni/ γ Al2O3 tersebut aktif dan stabil dengan konversi CH4 sekitar 80%."
Depok: Fakultas Teknik Universitas Indonesia, 2000
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Jakarta : Pengkajian Energi UI, 2006
531.6 IND
Buku Teks SO  Universitas Indonesia Library
cover
Manuhutu, Chassty T.
"Studi ini menganalisis dinamika perdagangan gas bumi di kawasan ASEAN + 3 berdasarkan pasar kompetitif. Kawasan tersebut meliputi negara-negara seperti: Indonesia, Malaysia, Thailand, Singapura, Mianmar, Australia, Cina, Jepang, Korea Selatan, dan negara Timur Tengah seperti Oman, Qatar dan UniEmirat Arab. Aparametric static equilibrium model yang diadaptasi dari Beltramo and Manne [14] telah digunakan untuk mensimulasikan pengaruh penambahan kapasitas kilang LNG, terminal regasifikasi, dan pipa transmisi pada perdagangan sejumlah volume dan harga tertentu gas bumi di kawasan ASEAN +3 pada tahun 2011. Perhatian khusus diberikan pada pengembangan proyek infrastruktur gas di Indonesia.
Hasil penelitian mengindikasikan bahwa pembeli LNG tradisional akan mendapatkan keuntungan dari penurunan harga gas dan sejumlah negara seperti : Singapura, Thailand dan Malaysia akan senang dengan pasokan gas yang stabil dan harga terjangkau dalam pasar kompetitif. Namun demikian konsumen gas besar seperti Cina dan Jawa akan menghadapi kendala yang serius yaitu terjadinya kelangkaan pasokan gas sebagai kosekuensi dari harga gas yang rendah disisi konsumen. Hasil simulasi juga menunjukkan bahwa ke depan pembangunan infrastruktur gas yang menghubungkan Jawa dan pulau lain sebagai sumber gas bumi selain Sumatra harus menjadi prioritas utama.

This study examines the dynamics of natural gas trade in the ASEAN + 3 region under competitive market framework. It includes countries like Indonesia, Malaysia, Thailand, Singapore, Myanmar, Australia, China, Japan, South Korea and Middle Eastern countries such as Oman, Qatar and U.E.A. A parametric static equilibrium model adapted from Beltramo and Manne [14] is constructed to analyse the effects of introducing additional liquefaction capacity, regasification terminal or transmission pipeline to traded volume and prices of natural gas in 2 011. Emphasis is given to infrastructure projects in Indonesia.
The results indicate that LNG traditional buyers will profit from reduced price and certain countries like Singapore, Thailand and Malaysia will enjoy stable and affordable gas supply in a competitive market. However, major gas consumers like China and Java can face serious threats of gas shortage as consequence of their low demand price. It al so appears that construction of another gas infrastructure to connect Java with other Indonesian islands besides Sumatra should be made priority.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Yuswan Muharam
"ABSTRAK
Konversi CO2 menjadi metanol dapat ditingkatkan dengan menggunakan katalis dalam reaksinya. Katalis yang biasa dipakai untuk hidrogenasi CO2 menjadi metanol adalah katalis log am kompleks CuO/ZnO/AI203. Akan tetapi, katalis ini masih memiliki kekurangan yaitu kinerja yang masih rendah dan stabilitas yang kurang baik. Hal ini disebabkan H2 yang harus diabsorpsi oleh katalis untuk reaksi hidrogenasi CO2 Iebih tinggi dibanding reaksi pembuatan metanol dengan umpan CO dan H2. Untuk itu diperlukan tambahan oksida logam PdO yang memiliki kemampuan adsorpsi H2 tinggi.
Untuk pengembangan proses hidrogenasi CO2 menjadi metanol perlu dilakukan studi kinetika reaksi dengan tujuan memperoleh persamaan laju reaksi kimia yang berlaku pada rentang kondisi operasi tertentu. Persamaan laju reaksi ini diperlukan dalam perancangan reaktor yang akan digunakan pada skala industri. Pada penelitian ini katalis yang digunakan adalah CuO/ZnO/AI2O3/PdO dengan luas permukaan katalis sebesar 108,6 m2 /gr.
Untuk mendapatkan persamaan laju reaksi yang berlaku umum, harus diusahakan agar reaksi secara keseluruhan hanya dikendalikan oleh kejadian-kejadian kimia saja (tidak termasuk adsorpsi eksternal dan internal).
Pada studi kinetika makro, model kinetika untuk laju konversi CO2 yang cukup representatif adalah model kinetika hukum pangkat sederhana dengan pendekatan model Cherif, dengan kesalahan absolut rata-rata sebesar 7,31 % dan koefisien korelasi R2 sebesar 89,69 %.
Model kinetika untuk laju pembentukan CH3OH yang secara statistik cukup representatif adalah model kinetika hukum pangkat sederhana dengan kesalahan absolut rata-rata sebesar 8,05 % dan koefisien korelasi R2 sebesar 97,54."
Depok: Fakultas Teknik Universitas Indonesia, 1999
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Slamet
"ABSTRAK
Penelitian ini bertujuan untuk melakukan studi kinetika reaksi hidrogenasi CO2 menjadi metanol menggunakan katalis CuO/ZnO/Al2O3/Cr2O3 , dengan pendekatan analisis kinetika makro (`hukum pangkat sederhana' dan `hukum pangkat kompleks') dan analisis kinetika mikro (kinetika mekanistis). Analisis kinetika makro menghasilkan model kinetika `hukum pangkat sederhana' (SPL) dan `hukum pangkat kompleks' (CPL) seperti pada persamaan-persamaan berikut: (lihat file Pdf)
Hasil studi kinetika makro menunjukkan bahwa model kinetika `hukum pangkat kompleks' dapat memperbaiki model kinetika `hukum pangkat sederhana'. Secara statistik model CPL lebih baik (akurat) dari pada model SPL, dan secara kinetika model CPL dapat memberikan informasi kinetika yang lebih lengkap dibandingkan dengan model SPL.
Hasil analisis kinetika mikro menunjukkan bahwa model kinetika yang terbaik secara statistik adalah model yang diturunkan dari mekanisme Langmuir. Namun secara kinetika belum ada model yang cocok dengan data kinetika yang diperoleh pada penelitian ini. Oleh karena itu maka perlu dilakukan simulasi lebih lanjut dengan model kinetika yang lain atau dengan data kinetika lain yang dicari dengan peralatan reaktor yang mendukung untuk studi kinetika mikro."
Depok: Fakultas Teknik Universitas Indonesia, 1998
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Rita Arbianti
"Reduksi CO2 menjadi CO adalah alternatif pemenuhan akan kebutuhan gas sintesis dengan rasio H2/CO yang rendah. Proses reduksi ini berlangsung baik dengan menggunakan reduktor oksida logam yang kekurangan oksigen. Oksida logam yang tepat akan memberikan hasil yang optimal terhadap proses reduksi ini. Penelitian tentang kemampuan reduktor oksida logam yang kekurangan oksigen akan memberikan informasi yang sangat berguna untuk pengembangan proses reduksi ini.
Penelitian ini diawali dengan pembuatan oksida logam CeO2 dengan metode presipitasi menggunakan bahan baku Ce(SO4)2.4H20 sebagai sumber logam Ce. Oxygen Untuk mengetahui adanya jenis ikatan CeO2 dilakukan karakterisasi FTIR dan luas permukaan diukur dengan metode BET. Oksida logam yang dihasilkan kemudian diuji keaktifannya dengan cara mereduksinya terlebih dahulu dengan gas H2 (suhu 700°C, laju alir 100 ml/menit) dan kemudian mereaksikannya dengan reaktan CO2 dengan beberapa variasi kondisi operasi. Variasi suhu yang dilakukan pada penelitian ini berkisar antara 650°C sampai dengan 800°C dengan interval kenaikan 50°C.
Hasil pengujian menunjukkan bahwa laju pembentukan CO yang tertinggi terjadi pada suhu reaksi 800°C dan laju alir 80 ml/menit sebesar 0,000135 mol/menit. Pengujian tersebut juga menunjukkan kenaikan kapasitas adsopsi seiring dengan kenaikan suhu sampai 750°C dan kemudian kenaikan suhu menyebabkan penurunan kapasitas adsorpsi. Fenomena lain yang terjadi adalah bahwa tidak semua CO2 teradsorp oleh reduktor menjadi produk gas CO, sebagian menempel pada permukaan reduktor."
Depok: Fakultas Teknik Universitas Indonesia, 2000
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Slamet
"Penelitian ini bertujuan untuk melakukan studi kinetika reaksi hidrogenasi CO2 menjadi metanol menggunakan katalis CuO ZnO AlOCrO dengan pendekatan analisis kinetika makro (hukum pangkat sederhana dan hukum pangkat kompleks). Analisis kinetika makro menghasilkan model kinetika ;hukum pangkat sederhana (SPL) dan hukum pangkat kompleks CPL seperti pada persamaan-persamaan berikut.
Hasil studi kinetika makro tersebut menunjukkan bahwa model kinetika hukum pangkat kompleks dapat memperbaikan model kinetika hukum pangkat sederhana. Secara statistik model CPL lebih baik (akurat) dari pada model SPL dan secara kinetika model CPL dapat memberikan informasi yang lebih lengkap dibandingkandengan model SPL"
Jurnal Teknologi, 1998
JUTE-XII-1-Mar1998-39
Artikel Jurnal  Universitas Indonesia Library
cover
Abdul Qoyum Tjandranegara
"The petroleum fuels (PF) subsidy has long burdens the government spending, and discourages less expensive energy usage such as natural gas (NG). Exporting NG and importing the more expensive PF products cause financial losses to Indonesia. The lack of NG infrastructure is the main hurdle in maximizing domestic NG usage and so does the perception of its high investment costs burdening government spending and pushing the NG transportation cost up. This study calculates the required NG infrastructure and its investments for several levels of PF substitutions up to 2030. To balance the NG demands, the supply from each field and its corresponding infrastructures needed was calculated and optimized using non-linear programming with generalized reduced gradient method to calculate the lowest transportation cost for the consumers. The study shows with a favorable return on investments attractive to private investors, the NG prices can still be put much lower than PF prices, allowing subsidy, import and production cost savings in many sectors. Furthermore, the highest level of substitution scenario needs only US$ 2.07 billion a year investment, very low compare to the current US$ 14.17 billion a year PF and electricity subsidy."
Depok: Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, 2011
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Mohammad Nasikin
"ABSTRAK
Plastik dan sejenisnya merupakan kebutuhan yang mutlak bagi manusia modern. Oleh karena itu etilen yang merupakan bahan baku produk tersebut mempunyai nilai sangat strategic. Saat ini, etilen diproduksi dengan cara mengkonversi hidrokarbon dari minyak bumi. Mengingat semakin terbatasnya cadangan minyak, maka perlu dicari alternatif untuk memproduksi etilen. Etilen dapat dibuat dari etanol yang merupakan bahan baku terbarukan. Pada penelitian ini, dipakai katalis H-zeolit alam Lampung dan terjadi reaksi dehidrasi seri-paralel menghasilkan dua produk, yaitu dietil eter sebagai produk antara dan etilen sebagai hasil akhir.
Tahun pertama penelitian diarahkan untuk melakukan identifikasi zeolit alam Lampung serta treatment untuk merubah menjadi H-Zeolit yang dilanjutkan dengan konstruksi alat dan pengujian H-Zeolit pada reaktor alir kontinyu. Sedangkan tahun II, penelitian dilakukan untuk menentukan metode keseluruhan untuk mendapatkan katalis H-Zeolit yang memenuhi syarat aktivitas, selektivitas dan stabilitas sebagai katalis. Pada tahun ke-2 penelitian ini dilakukan dealuminasi dengan larutan asam untuk menaikkan ketahanan termal zeolit. Sedangkan tahun ke-3 difokuskan pada studi kinetika untuk menentukan persamaan reaksi, besaran konstanta laju reaksi, serta pemodelan untuk mensimulasi reaksi untuk skala pilot maupun skala komersial.
Pada tahun pertama, didapatkan metode preparasi zeolit menjadi H-Zeolit(HZ) dengan luas permukaan 90m2/g dan jumlah ion tertukar maksimum 62% (1120 meg1100 gzeolit) serta kekuatan asam yang tinggi dengan suhu desorpsi piridin 500°C. H-Zeolit tersebut memiliki aktivitas 3x lebih tinggi dibandingkan Zeolit alam (ZAL) dan mampu mengkonversi etanol 100% pada suhu reaksi 325°C akan tetapi mempunyai ketahanan termal hanya sampai suhu 300°C.
Dealuminasi terhadap zeolit alam Lampung pada tahun II dapat menaikkan rasio Si/Al sampai 1,6x apabila digunakan HC1 (HZC) dan terjadi kenaikan 1,8x apabila dengan HE. Terjadi pula kenaikan luas permukaan dengan luas maksimum 100m2/g. Kenaikan luas permukaan ini diikuti dengan kenaikan luas mikropori sehingga zeolit hasil dealuminasi memenuhi syarat sebagai katalis untuk reaksi dehidrasi etanol. Spektra IR menunjukkan zeolit yang telah didealuminasi mempunyai ketahanan termal sampai 600°C. Dari uji reaksi dapat disimpulkan bahwa HZC memiliki aktivitas, stabilitas termal maupun stabilitas reaksi yang paling tinggi. Oleh karena itu zeolit yang dipakai pads penelitian selanjutnya adalah zeolit dengan dealuminasi HCL 1 tahap dan pertukaran ion menggunakan NH¢NO3 dengan suhu kalsinasi 420°C.
Studi kinetika pada tahun ke-3 menunjukkan bahwa reaksi dehidrasi etanol menjadi etilen adalah reaksi concecutive-parallel dengan dietil eter sebagai produk antara. Harga konstanta laju reaksi sating berhubungan satu sama lain sehingga keseluruhan konstanta dapat ditentukan dengan penentuan satu konstanta laju pengurangan etanol menjadi eter.
Model untuk reaksi dehidrasi etanol menjadi etilen dapat disusun dari persamaan neraca massa berskala pelet katalis maupun berskala reaktor. Pers maan yang terbentuk merupakan persamaan diferensial biasa orde dua. Persamaan ini dipecahkan dengan metode Runge-Kutta dan disimulasikan pada berbagai kondisi operasi.
Hasil simulasi skala pelet menunjukkan bahwa laju reaksi dipengaruhi oleh tahanan difusi sehingga semakin besar diameter pelet akan menurunkan harga faktor efektivitas. Kenaikan diameter pelet dari 0,2-0,5 cm mengakibatkan penurunan faktor efektivitas sebesar 60 % untuk dietileter dan 40 % untuk etanoI. Untuk diameter partikel = 0,5cm dan suhu reaksi = 673K faktor efektivitas etanol, eter dan etilen adalah berturut-turut 0,6, 0,4 dan 0,62. Sedangkan peningkatan suhu dari 450 menjadi 673K menyebabkan penurunan faktor efektivitas etanol dari 0,97 menjadi 0,6.
Sedangkan hasil simulasi skala Raktor menunjukkan pada P =i atrn, dan T = 673 K dihasilkan etilen maksimum dengan selektifitas 96,4 %, yield 92,4 %, dan konversi etanol 95,8%. Eter maksimum dihasilkan dengan selektifitas 14,7% , yield 14,39% dan konversi etanol 97,68% pada P =9 atm, dan T = 673 K. Reaktor isotermal untuk reaksi dehidrasi etanol yang dapat menghasilkan produk etilen optimum pada P = 1 atm dan T = 673 K, adalah raktor dengan dimensi : L = 3 m, D reaktor = 10 cm, diameter pelet katalis = 0,5 cm, dan berat katalis = 14,7 Kg."
Depok: Fakultas Teknik Universitas Indonesia, 2000
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
<<   1 2   >>