Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 43 dokumen yang sesuai dengan query
cover
Sulthoni Catur Hariadi
"Energi terbarukan telah menjadi topik penting dalam beberapa tahun terakhir karena meningkatnya kekhawatiran tentang perubahan iklim dan keterbatasan energi fosil. Salah satu sumber energi terbarukan yang menjanjikan adalah energi matahari, yang dapat dimanfaatkan tanpa menghasilkan emisi zat sisa dan tersedia di seluruh tempat. Salah satu aplikasi pemanfaatan energi matahari adalah Solar Thermal Cooling System (STCS), yang menggantikan sistem pendingin konvensional yang menggunakan refrigeran sintetis dan berkontribusi terhadap emisi gas rumah kaca. Evacuated Tube Solar Collector (ETSC) adalah salah satu jenis kolektor surya yang digunakan untuk memanaskan air dan memiliki efisiensi lebih tinggi dibandingkan kolektor surya datar karena menggunakan tabung vakum yang mengurangi kehilangan panas. Pada penelitian ini, performa ETSC diuji dengan menggunakan reflector di bagian bawah tabung yang divariasikan jenisnya, yaitu pelat galvalum dan pelat aluminium, dengan standar ASHRAE 93-2003 sebagai referensi. Pengujian dilakukan pada sudut kolektor surya 15° dengan flowrate sebesar 2,6 LPM. Hasil penelitian menunjukkan bahwa ETSC dengan reflector aluminium memiliki efisiensi rata-rata tertinggi (63%), diikuti oleh ETSC dengan reflector galvalum (55%), dan ETSC tanpa reflector (50%). Penggunaan reflector aluminium meningkatkan efisiensi sebesar 13%, sementara reflector galvalum meningkatkan efisiensi sebesar 5%. Oleh karena itu, penggunaan reflector aluminium lebih efektif dalam meningkatkan efisiensi ETSC dibandingkan dengan reflector galvalum. Hasil penelitian efisiensi ETSC tanpa reflector ini memiliki nilai lebih rendah daripada nilai efisiensi dari standar pengujian perusahaann yang sebesar 75%. Hal ini dapat disebabkan oleh beberapa faktor seperti perbedaan kondisi pengujian, kualitas peralatan, dan desain dan instalasi.

Renewable energy has become a significant topic in recent years due to growing concerns about climate change and the limitations of fossil energy. One promising source of renewable energy is solar energy, which can be harnessed without producing emissions and is available everywhere. One application of solar energy utilization is the Solar Thermal Cooling System (STCS), which replaces conventional cooling systems that use synthetic refrigerants and contribute to greenhouse gas emissions. The Evacuated Tube Solar Collector (ETSC) is a type of solar collector used to heat water and has higher efficiency compared to flat plate solar collectors because it uses vacuum tubes that reduce heat loss. In this study, the performance of ETSC was tested using reflectors at the bottom of the tubes with different types, namely galvalume plates and aluminum plates, with ASHRAE 93-2003 standards as a reference. The tests were conducted at a solar collector angle of 15° with a flow rate of 2,6 LPM. The results showed that ETSC with an aluminum reflector had the highest average efficiency (63%), followed by ETSC with a galvalume reflector (55%), and ETSC without a reflector (50%). The use of an aluminum reflector increased efficiency by 13%, while the galvalume reflector increased efficiency by 5%. Therefore, the use of an aluminum reflector is more effective in improving ETSC efficiency compared to the galvalume reflector. The efficiency results of ETSC without a reflector are lower than the company's standard test efficiency value of 75%. This can be caused by several factors such as differences in test conditions, equipment quality, and design and installation."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizatar Fario Shehriar
"Potensi limbah biomassa di Indonesia mencapai 35,6 GW dengan padi sebesar 19,41 GW. Sekam padi merupakan salah satu sumber energi terbarukan dari biomassa yang potensialnya paling besar karena Luas Lahan Baku Sawah (LBS) mencapai 7.463.948 hektare dengan produktivitas 5,7-6,1 ton/ha. Dengan menggunakan sistem gasifikasi, limbah sekam padi dapat memanfaatkan energi yang tersimpan di dalamnya. Sistem dari Mobile Biomass Gasifier Purwarupa 3 (P3) merupakan gasifier yang dapat berjalan secara kontinu dengan kapasitas reaktor 25 kg/jam. Dengan melakukan eksperimen, didapatkan nilai feeding rate yang ideal, char removal rate, profil temperatur dan mass balance saat menjalankan eksperimen dengan perlakuan sama setiap variasi. Didapatkan komposisi syngas untuk setiap variasi vibrating grate 10%, 12%, dan 14%. Komposisi syngas terbaik didapatkan pada vibrating grate sebesar 10% (24 RPM), feeding rate 6,82 kg/jam, suhu zona oksidasi (T3) rata-rata sebesar 544°C dan ER 0,28. Didapatkan komposisi syngas (%Volume) CO, CH4, H2, dan CO2 secara beurutan sebesar 14,08%; 2,09%; 3,74%; dan 1,75%, serta nilai LHV sebesar 2,93 MJ/Nm3 . Didapatkan Cold Gas Efficiency sebesar 44,17%. Pulau Nusa Tenggara Timur didasarkan pada rasio elektrifikasi terendah se-Indonesia dapat dijadikan sasaran untuk Mobile Biomass Gasifier Purwarupa 3. Diharapkan untuk penelitian-penelitian selanjutnya dapat mengembangkan alat gasifier untuk bahan bakar limbah biomassa selain dari sekam padi agar potensi biomassa dapat dimaksimalkan.

The potential biomass waste in Indonesia reaches 35.6 GW, with rice husk accounting for 19.41 GW. Rice husk is one of the most significant potential renewable energy sources from biomass due to the extensive paddy field area of 7,463,948 hectares with a productivity of 5.7-6.1 tons/ha. By utilizing gasification technology, rice husk waste can harness the energy stored within it. The Mobile Biomass Gasifier Prototype 3 (P3) system is a gasifier capable of continuous operation with a reactor capacity of 25 kg/hour. Through experiments, the ideal feeding rate, char removal rate, temperature profile, and mass balance were determined under the same treatment for each variation. The composition of syngas was obtained for each vibrating grate variation of 10%, 12%, and 14%. The best syngas composition was achieved with a vibrating grate of 10% (24 RPM), feeding rate of 6.82 kg/hour, average oxidation zone temperature (T3) of 544°C, and an equivalence ratio (ER) of 0.28. The syngas composition (% volume) was found to be 14.08% CO, 2.09% CH4, 3.74% H2, and 1.75% CO2, with a lower heating value (LHV) of 2.93 MJ/Nm3. The Cold Gas Efficiency obtained was 44.17%. The East Nusa Tenggara Island, based on the lowest electrification ratio in Indonesia, can be targeted for the Mobile Biomass Gasifier Prototype 3. Further research is expected to develop gasifier devices for biomass waste fuels other than rice husk to maximize the potential of biomass.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aryasatya Utama Manggalaputra
"Pemanfaatan biomassa sebagai sumber energi baru terbarukan (EBT) digunakan sebagai pengganti bahan bakar konvensional. Teknologi gasifikasi menjadi salah satu cara untuk merubah limbah padat biomassa menjadi bahan bakar berbentuk gas. Tim Riset Teknologi Gasifikasi Biomassa Universitas Indonesia telah merancang teknologi mobile biomass gasifier yang dapat mengkonversi limbah sekam padi sebagai sumber energi menjadi listrik dengan kapasitas 20kW. Penelitian ini dilakukan untuk mengetahui peluang bisnis dan evaluasi ekonomi berdasarkan daya mesin dan daya generator yang dihasilkan secara teoritis pada mesin yang akan digunakan pada prototipe 3.0 NG. Penelitian dilakukan dengan menggunakan aplikasi engine modelling Diesel-RK. Mesin akan divariasikan putaran mesin dari 600 rpm hingga 1500 rpm dengan interval 100 rpm menggunakan bahan bakar syngas. Dari hasil modelling, didapatkan daya yang dihasilkan oleh mesin berkisar 11,252 kW hingga 28,741 kW, sedangkan daya keluaran listrik/generator yang dihasilkan berkisar 9,34 kWh hingga 23,86 kWh. Data yang didapatkan dimasukkan ke dalam  perhitungan tekno-ekonomi pada proyek mobile biomass gasifier. Didapatkan nilai levelized cost of electricity (LCOE) dari proyek sebesar 1.426,84 IDR/kWh. Adapun hasil analisis tekno-ekonomi didapatkan melalui empat skenario yang berbeda dengan variabel yang diperhitungkan dan tidak diperhitungkan adalah penjualan biochar dan penggunaan bahan bakar menunjukkan bahwa proyek mobile biomass gasifier belum layak secara ekonomi untuk dua skenario. Maka dari itu, peningkatan kapasitas reaktor ataupun penambahan jumlah reaktor, penggunaan daya mesin yang lebih tinggi menjadi 50kW, dan pemindahan penempatan proyek ke luar pulau Jawa direkomendasikan untuk mencapai kelayakan ekonomi yang diinginkan agar proyek mobile biomass gasifier memiliki visibilitas dalam peluang bisnis kedepannya.

Utilization of biomass as a source of renewable energy is used as a substitute for conventional fuels. Gasification technology is one way to convert biomass solid waste into gaseous fuel. The Biomass Gasification Technology Research Team at the University of Indonesia has designed a mobile biomass gasifier technology that can convert rice husk waste as an energy source into electricity with a capacity of 20kW. This research was conducted to determine business opportunities and economic evaluation based on engine power and generator power generated theoretically on the engine to be used in the 3.0 NG prototype. The research was conducted using the Diesel-RK engine modelling application. The engine speed will be varied from 600 rpm to 1500 rpm with an interval of 100 rpm using syngas fuel. From the modelling results, the power generated by the engine ranges from 11.252 kW to 28.741 kW, while the output power of the electricity/generator produced ranges from 9.34 kWh to 23.86 kWh. The data obtained is entered into the techno-economic calculation of the mobile biomass gasifier project. A levelized cost of electricity (LCOE) value was obtained from the project of 1,426.84 IDR/kWh. The results of the techno-economic analysis were obtained through four different scenarios with the variables that were taken into account and not taken into account, namely sales of biochar and use of fuel indicating that the mobile biomass gasifier project was not economically feasible for the two scenarios. Therefore, increasing the reactor capacity or adding the number of reactors, using a higher engine power to 50kW, and moving the project placement outside Java Island are recommended to achieve the desired economic feasibility so that the mobile biomass gasifier project has visibility in future business opportunities.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Devin Adiriwanto
"Di industri farmasi, dispersi partikel yang buruk dapat membahayakan kualitas produk, proses manufaktur. Dispersi partikel yang buruk dapat mengganggu proses berikutnya, seperti filtrasi, pengeringan, dan pemerasan tablet. Dispersi partikel yang buruk dapat meningkatkan kemungkinan kontaminasi terhadap produksi obat lain selanjutnya di ruangan tersebut. Dispersi partikel sangat dipengaruhi oleh aliran udara. Penempatan saluran masuk dan keluar dapat menentukan pola aliran udara di ruang bersih. Pemakaian purifier juga dapat mengurangi jumlah partikel di dalam ruangan. Penulis hendak melakukan simulasi CFD untuk menampilkan distribusi partikel, jumlah partikel yang dapat dibersihkan. Model yang digunakan untuk simulasi adalah single side down, top supply down return, top supply top return. Penambahan purifier mobile di dua lokasi berbeda akan ditinjau penulis untuk mengetahui apakah purifier memberikan dampak signifikan di Industri Farmasi. Supply yang berada di Langit langit dapat menyebabkan distribusi partikel yang tidak merata. Sedangkan supply dari sisi samping memberikan turbulensi yang lebih seimbang, sehingga sebaran partikel lebih seragam. Outlet yang diposisikan dibawah mendekati lantai akan memberikan pembersihan partikel yang tetap dan seragam. Sebaliknya, untuk outlet yang diletakan di langit langit dapat mengakibatkan distribusi partikel yang tidak merata karena partikel yang lebih berat cenderung akan tertinggal di lantai. Model yang optimal untuk mencapai distribusi partikel seragam adalah single side down. Model yang paling banyak mengurangi partikel adalah Single side Down yaitu sebesar 160.297.041 atau 49,1 %Penambahan purifier tidak terlalu berdampak signifikan terhadap pengurangan partikel di ruangan produksi. Hanya mengurangi 3,9% dan 10,9%.

In the pharmaceutical industry, poor particle dispersion can compromise product quality, manufacturing processes. Poor particle dispersion can interfere with subsequent processes, such as filtration, drying, and tablet pressing. Poor particle dispersion can increase the possibility of contamination of other drug production in the area. Particle dispersion is strongly influenced by air flow. The placement of inlet and outlet ducts can determine the airflow pattern in the cleanroom. Using a purifier can also reduce the number of particles in the room. The author wants to carry out a CFD simulation to display the distribution of particles, the number of particles that can be cleaned. The model used for simulation is single side down, top supply down return, top supply top return. The author will review the addition of mobile purifiers in two different locations to find out whether the purifiers have a significant impact on the Pharmaceutical Industry. Supply located on the ceiling can cause uneven particle distribution. Meanwhile, the supply from the side provides more balanced turbulence, so that the particle distribution is more uniform. Outlets positioned below the floor will provide constant and uniform cleaning of particles. On the other hand, outlets placed on the ceiling can result in uneven particle distribution because heavier particles tend to remain on the floor. The optimal model to achieve uniform particle distribution is single side down. The model that reduces the most particles is Single side Down, namely 160,297,041 or 49.1%. The addition of a purifier does not have a significant impact on reducing particles in the production room. Only reduces 3.9% and 10.9%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dika Auliady
"Kualitas udara di Indonesia semakin buruk setiap tahunnya. Salah satu penyebabnya adalah penggunaan kendaraan bermotor yang masih menggunakan bahan bakar fosil. Jumlah kendaraan bermotor semakin meningkat setiap tahunnya sekitar 5% dari tahun sebelumnya. Penggunaan bahan bakar fosil pun semakin meningkat, dimana hasil pembakaran dari bahan bakar fosil ini mengandung CO, CO2, dan HCyang berbahaya untuk lingkungan dan pernapasan manusia. Untuk Indonesia, kondisinya saat ini sudah cukup berbahaya karena sudah melewati batas jumlah partikulat yang dianjurkan WHO. Akibat berkurangnya jumlah cadangan minyak bumi dan rusaknya udara lingkungan, Pemerintah Indonesia dan negara lain pun berupaya untuk mencari bahan bakar alternatif dari bahan bakar fosil. Bioetanol merupakan salah satu potensi bahan bakar alternatif yang bisa didapatkan dari tanaman melalui proses fermentasi. Mengingat Indonesia cukup mudah untuk menemukan tanaman-tanaman ini, maka sumber bahan baku ini relatif mudah didapat, dan bersifat terbarukan. Bioetanol sudah digunakan dalam bentuk campuran dengan bahan bakar fosil, namun karena perbedaan polar dan non-polar dari campuran ini menyebabkan campuran tidak menyatu sepenuhnya. Maka diperlukan suatu aditif yang dapat berperan sebagai pelarut untuk membuat campuran menjadi homogen. Sehingga penelitian ini dilakukan untuk melihat penggunaan bahan bakar campuran bensin – bioethanol yang ditambahi zat aditif pada mesin spark ignition (SI). Zat aditif yang digunakan yaitu cyclohexanol dengan volume yang divariasikan. Kemudian dilakukan analisis terhadap hasil emisi gas buang dan coefficient of variation (COV). Dari hasil pengujian, pencampuran zat aditif cyclohexanol dapat memperbaiki COV dan semakin memperbaiki kualitas emisi gas buang yang dihasilkan dari pembakaran.

Air quality in Indonesia is getting worse every year. One of the causes is the use of motor vehicles that still use fossil fuels. The number of vehicles increases annually by about 5% from the previous year. The use of fossil fuels is also increasing, where the combustion products of these fossil fuels contain CO, CO2, HC, O2 which are dangerous to the environment and human respiration. In Indonesia, the current condition is quite dangerous because it exceeds the limit for the number of particulates recommended by WHO. Due to the lack of oil reserves and environmental air damage, the Government of Indonesia and other countries are trying to find alternative fuels from fossil fuels. Bioethanol is one of the potential alternative fuels that can be obtained from plants such as cassava, rice, and others through the fermentation process. Considering that Indonesia is a country that is quite easy to find these such plants, the sources of these raw materials are relatively easy to obtain, and renewable. Bioethanol has been used in the form of a mixture with fossil fuels, but because of the polar and non-polar properties in this mixture, the mixture does not blend completely. Therefore, we need an additive that can act as a solvent to make the mixture homogeneous. In this research was conducted to see the use of gasoline-bioethanol mixture fuel added with additives in spark ignition (SI) engines. The additive used is cyclohexanol with varied volumes. Then an analysis of exhaust gas emissions and coefficient of variation (COV) of the combustion is carried out. From the test results, mixing cyclohexanol additives can improve COV and improve the quality of exhaust emissions resulting from combustion of the mixtures."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Azmi
"Pada abad ke-21 ini, tantangan utama yang dihadapi dunia adalah bagaimana mengelola konsumsi energi secara berkelanjutan tanpa mengorbankan keberlanjutan lingkungan dan sumber daya alam. Kebutuhan energi Indonesia dari tahun ke tahun mengalami peningkatan seiring dengan meningkatnya pertumbuhan ekonomi dan jumlah penduduk Indonesia. Bahan bakar minyak telah menjadi tulang punggung utama dalam pemenuhan kebutuhan energi global selama puluhan tahun. Berdasarkan Energi Outlook Indonesia yang dikeluarkan oleh BPPT pada tahun 2022, Konsumsi BBM di sektor transportasi pangsanya mencapai 73,5% pada tahun 2012 dan terus meningkat menjadi 90,3% pada tahun 2021. Oleh karena itu, inisiatif pengembangan bahan bakar alternatif harus mulai dilakukan yang nantinya dapat digunakan oleh masyarakat. Pemerintah melalui Peraturan Presiden Nomor 22 Tahun 2017 tentang Rencana Umum Energi Nasional menyatakan bahwa bioetanol yang diproyeksikan sebagai substitusi dari bensin (gasoline) ditargetkan pada tahun 2025 hingga seterusnya ditargetkan sebesar 20%. Akan tetapi penambahan kandungan etanol dalam bahan bakar memiliki kekurangan dimana sifat dari bahan bakar tersebut akan menjadi lebih korosif dari sebelumnya. Sifat korosif ini dapat menyebabkan kerusakan pada bagian mesin yang mengalami kontak langsung dengan bahan bakar tersebut. Maka dari itu perlu adanya penambahan zat aditif sebagai inhibitor sifat korosi dari bahan bakar campuran etanol. Penelitian ini dilakukan dengan menggunakan mesin Honda Supra 125 FI dan dihubungkan dengan dynamometer serta alat gas analyzer untuk menganalisis hasil tenaga dan emisi yang dihasilkan oleh mesin. Sebagai variasi untuk mendapatkan data yang lebih banyak dan melihat pengaruh dari campuran aditif dalam bahan bakar, penelitian ini akan menggunakan variasi konsentrasi aditif dan dua tipe aditif yaitu

Tert-Butylamine dan Lemongrass Oil. In the 21st century, the main challenge faced by the world is how to manage energy consumption sustainability without compromising environmental sustainability and natural resources. Indonesia's energy demand increases year by year in line with the country's economic growth and population increase. Oil fuel has been the backbone of fulfilling global energy needs for decades. According to the 2022 Indonesia Energy Outlook issued by BPPT, fuel consumption in the transportation sector reached a share of 73.5% in 2012 and continued to increase to 90.3% in 2021. Therefore, initiatives to develop alternative fuels must be started, which can later be used by the public. The government, through Presidential Regulation No. 22 of 2017 concerning the General Plan for National Energy, states that bioethanol, projected as a substitute for gasoline, is targeted to reach 20% by 2025 onwards. However, the addition of ethanol content in fuel has a disadvantage in that the fuel becomes more corrosive than before. This corrosive property can cause damage to parts of the engine that come into direct contact with the fuel. Therefore, it is necessary to add additives as inhibitors of the corrosive properties of ethanol-blended fuels. This research was conducted using a Honda Supra 125 FI engine connected to a dynamometer and a gas analyzer to analyze the power and emissions produced by the engine. To obtain more data and observe the influence of additive mixtures in the fuel, this research will use variations in additive concentrations and two types of additives, namely Tert-Butylamine and Lemongrass Oil."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Daffa Farhan Ahmad
"Penelitian ini bertujuan untuk mengkaji karakteristik pembakaran dari campuran premix bahan bakar yang terdiri dari gasoline, etanol, dan metanol menggunakan simulasi Closed Homogeneous Batch Reactor berupa Shock Tube Reactor pada perangkat lunak CHEMKIN yang terintegrasi dalam ANSYS. Dengan meningkatnya kebutuhan akan bahan bakar alternatif yang efisien dan lebih ramah lingkungan, studi ini berfokus pada pemahaman perilaku pembakaran campuran bahan bakar tersebut dan potensinya untuk mengurangi emisi berbahaya serta meningkatkan efisiensi pembakaran. Metode yang digunakan melibatkan simulasi numerik dengan mengatur berbagai rasio campuran antara gasoline, etanol, dan metanol. Parameter yang dianalisis mencakup temperatur pembakaran, fraksi mol, laju pembentukan, sensitivitas, dan emisi gas buang seperti CO dan CO₂. Simulasi dilakukan pada kondisi tekanan tetap dan temperatur yang difokuskan pada temperatur 800-1500 K. Studi ini menyimpulkan bahwa penggunaan campuran premix gasoline, etanol, dan metanol sebagai bahan bakar alternatif dapat memberikan solusi yang lebih ramah lingkungan dengan tetap mempertahankan efisiensi pembakaran yang tinggi. Simulasi Closed Homogeneous Batch Reactor CHEMKIN ANSYS terbukti efektif dalam menganalisis karakteristik pembakaran dan memberikan wawasan penting untuk pengembangan bahan bakar campuran yang lebih baik di masa depan.

This study aims to examine the combustion characteristics of a premix fuel mixture consisting of gasoline, ethanol, and methanol using a Closed Homogeneous Batch Reactor simulation in the form of a Shock Tube Reactor on the CHEMKIN software integrated within ANSYS. With the increasing demand for efficient and more environmentally friendly alternative fuels, this study focuses on understanding the combustion behavior of these fuel mixtures and their potential to reduce harmful emissions while improving combustion efficiency. The method involves numerical simulations by setting various mixture ratios between gasoline, ethanol, and methanol. The parameters analyzed include combustion temperature, mole fraction, formation rate, sensitivity, and exhaust gas emissions such as CO and CO₂. The simulations are conducted under constant pressure conditions with temperatures ranging from 700 to 1500 K. The study concludes that using a premix of gasoline, ethanol, and methanol as an alternative fuel can provide a more environmentally friendly solution while maintaining high combustion efficiency. The CHEMKIN ANSYS Closed Homogeneous Batch Reactor simulation proves effective in analyzing combustion characteristics and offers important insights for the development of better fuel mixtures in the future."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alia Rizqika Putri
"Kebakaran lahan gambut yang semakin bertambah di Indonesia setiap tahunnya memicu ketertarikan dalam penelitian terkait karakteristik tanah gambut pada kemampuannya terkait penyerapan air kembali. Tanah gambut sejatinya memiliki sifat hidrofilik atau kemampuan dapat menyerap air dalam jumlah tinggi. Namun, ketika terkena panas, tanah gambut yang mengalami kekeringan akan berubah sifatnya menjadi hidrofobik karena adanya proses kimiawi. Hal ini terjadi karena tanah gambut memiliki sifat irreversible drying atau pengeringan yang tidak dapat dipulihkan apabila tanah gambut telah kering. Untuk membuktikan perubahan sifat yang dimiliki tanah gambut, dilakukan eksperimen dengan skala mikro (1 gram) menggunakan tanah gambut yang berasal dari dua pulau berbeda, Kalimantan dan Sumatra, yang dimasukkan ke dalam container alumunium dengan massa kurang lebih 1 gram dan dipanaskan dengan temperatur 100°C, 110°C, 120°C, 130°C, dan 140°C. Kemudian, sampel ini direndam di dalam air selama 30 menit dan ditiriskan selama 12 jam dalam keadaan terisolasi dari lingkungan luar sebelum dicek kandungan kelembabanya dengan moisture analyzer Shimadzu MOC63u selama 30 menit dengan temperatur 100°C. Selain itu, sampel tanah yang telah dikeringkan akan dilihat menggunakan mikroskop untuk mengetahui perubahan struktur ketika dikeringkan. Berdasarkan hasil eksperimen, didapat bahwa temperatur yang semakin tinggi mempengaruhi kemampuan tanah gambut dalam menyerap air kembali setelah dikeringkan. Selain itu, struktur tanah gambut yang telah dikeringkan juga berubah, yang tadinya pori-porinya saling tersambung menjadi terputus akibat terpapar panas. Hal ini menyebabkan tanah gambut menjadi memiliki sifat hidrofobik.

The increasing number of peatland fires in Indonesia each year has sparked interest in research related to the characteristics of peat soil in its ability to absorb water again. Peat soil actually has hydrophilic properties or the ability to absorb high amounts of water. However, when exposed to heat, peat soils that experience drought will change their properties to hydrophobic due to a chemical process. This happens because peat soil has irreversible drying properties that cannot be restored once the peat soil has dried. To prove the change in properties of peat soil, a micro-scale experiment (1 gram) was conducted using peat soil from two different islands, Kalimantan and Sumatra, which was put into an aluminum container with a mass of approximately 1 gram and heated to temperatures of 100°C, 110°C, 120°C, 130°C and 140°C. Then, these samples were soaked in water for 30 minutes and drained for 12 hours in isolation from the outside environment before checking the moisture content with a Shimadzu MOC63u moisture analyzer for 30 minutes at 100°C. In addition, the dried soil samples were examined using a microscope to determine the structural changes during drying. Based on the experimental results, it was found that higher temperatures affect the ability of peat soil to absorb water again after drying. In addition, the structure of the dried peat soil also changes, from being connected to each other to being disconnected due to exposure to heat. This causes the peat soil to become hydrophobic."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizki Raihan
"Gambut adalah salah satu jenis tanah organik hasil sisa-sisa tanaman yang secara umum dapat ditemukan pada beberapa wilayah seperti pada wilayah artik (utara), hutan boreal, dan wilayah tropis. Salah satu negara tropis yang kaya akan gambut adalah Indonesia. Dengan luas sekitar 13 juta ha, persebaran lahan gambut terdapat di Pulau Sumatra, Kalimantan, dan Papua (Aseanpeat, 2023). Namun dengan meningkatnya pertumbuhan penduduk menyebabkan banyaknya kegiatan penebangan liar, pembukaan lahan serta pengunaan saluran air yang dapat membuat ekosistem dari lahan gambut menjadi rusak. Karena hal tersebut, kemungkinan terjadinya kebakaran lahan gambut semakin meninggi. Pembasahan ulang atau rewetting merupakan metode pencegahan yang bertujuan untuk menjaga dan memulihkan kelembaban gambut. Maka dari itu, dilakukan penelitian untuk mengamati sifat-sifat dari gambut yang telah dikeringkan dan juga setelah dilakukannya proses pembasahan kembali untuk mengetahui batas kemampuan tanah untuk menyerap kembali air. Variabel yang didapatkan berupa massa dan kadar air dari tanah. Sebagai pembanding digunakan sampel tambahan berupa sabut kelapa. Hasil eksperimen dengan sampel Gambut terbukti bahwa dengan temperatur menyerupai Kalimantan, kemampuan menyerap air pada gambut berbeda pada variasi waktu yang berbeda. Penyerapan dengan variasi waktu rewetting 1 jam lebih sedikit dibandingkan dengan waktu pengeringan rewetting 3 jam dengan rata-rata peningkatan moisture content dan peningkatan massa sebesar 12.86% dan 0.15%. Berbeda dengan sabut yang tidak dapat menyerap kembali air dengan rata-rata peningkatan moisture content dan penurunan massa selama 2 jam sebesar 1.5% dan 2%. Pengambilan data dapat dilakukan dengan lebih efektik menggunakan sensor kadar air yang lebih baik serta keefektifan penyaluran air ke tabung dapat ditingkatkan.

Peat is a one type of organic soil formed from the remains of plants and is generally found in several regions such as the Arctic (northern), boreal forests, and tropical regions. One tropical country rich in peat is Indonesia. With an area of approximately 13 million hectares, the distribution of peatlands is found on the islands of Sumatra, Kalimantan, and Papua (Aseanpeat, 2023). However, the increasing population growth has led to illegal logging activities, land clearing, and the use of water channels that can damage the ecosystem of peatlands. Because of this, the likelihood of peatland fires is increasing. Rewetting is a prevention method aimed at maintaining and restoring peat moisture. Therefore, research has been conducted to observe the properties of dried peat and also after the rewetting process to determine the soil's ability to reabsorb water. The variables obtained are the mass and water content of the soil. Coconut husk samples are used as a comparison. The experimental results with peat samples showed that at temperatures similar to Kalimantan, the water absorption capacity of peat varies with different rewetting time variations. Absorption with a rewetting time variation of 1 hour was less than with a rewetting drying time of 3 hours with an average increase in moisture content and mass increase of 12.86% and 0.15%. This is different from coir which cannot reabsorb water with an average increase in moisture content and decrease in mass over 2 hours of 1.5% and 2%. Data collection can be done more effectively using better water content sensors and the effectiveness of water distribution to the tubes can be increased."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Luthfi Muhammad
"Indonesia merupakan negara berkembang dengan populasi dan ekonomi yang terus tumbuh, menghadapi tantangan besar dalam memenuhi kebutuhan energi, terutama di sektor transportasi. Hingga Januari 2023, ada 152,56 juta kendaraan bermotor, mayoritas menggunakan BBM. Konsumsi energi transportasi pada 2020 didominasi BBM (86%). Berdasarkan Peraturan Menteri ESDM Nomor 12 Tahun 2015 pada sektor Transportasi diwajibkan minimal penggunaan bioetanol sebanyak 20%. Namun penggunaan etanol ini memiliki kecenderungan bersifat korosif pada komponen mesin sehingga dibutuhkan suatu aditif inhibitor korosi Lemongrass Oil dan TBA untuk menanggulangi hal tersebut. Penelitian ini menguji apakah ada pengaruh pada performa mesin jika adanya penambahan aditif tersebut. Pengujian ini dilakukan pada mesin Honda Supra 125 FI dan dilakukan pada alat dynamometer yang berfungsi untuk mengukur parameter performa seperti daya, torsi, dan SFC. Campuran bahan bakar yang diuji terdapat campuran E20 dengan penambahan Lemongrass Oil dengan variasi 0,68 x 10^-6; 1,35 x 10^-6; dan 2,03 x 10^-6 mol. dan penambahan 0,026; 0,13; dan 0,65 mol. Hasil pengujian menunjukan nilai daya tertinggi pada RPM 8000 terdapat pada campuran E20 + TBA 1 sebesar 6,08 kW memiliki kenaikan persentase 4,06% dibandingkan dengan bahan bakar pertalite. Nilai torsi paling tinggi pada setiap campuran terdapat pada RPM rendah yaitu RPM 4000 sampai 5000, dengan nilai torsi terbesar terdapat pada campuran E20 + LGO 1 sebesar 8,73 Nm. Nilai SFC yang rendah dihasilkan pada campuran E20 + LGO 1 dengan nilai 325,17 gr/kWh pada RPM 4000 dan SFC paling rendah pada RPM 8000 terdapat pada campuran bahan bakar E20 + TBA 3 yaitu sebesar 407,64 gr/kWh. Nilai efisiensi termal tertinggi terdapat pada campuran E20 + LGO 1 dengan nilai 27,076 %.

Indonesia is a developing country with a population and economy that continues to grow, facing big challenges in meeting energy needs, especially in the transportation sector. As of January 2023, there are 152.56 million motorized vehicles, most of which use fuel. Transportation energy consumption in 2020 is dominated by fuel (86%). Based on Minister of Energy and Mineral Resources Regulation Number 12 of 2015, the Transportation sector requires a minimum use of 20% bioethanol. However, the use of ethanol has a tendency to be corrosive to engine components, so a corrosion inhibitor additive, Lemongrass Oil and TBA, is needed to overcome this. This research tests whether there is an effect on engine performance if these additives are added. This test was carried out on a Honda Supra 125 FI engine and carried out on a dynamometer which functions to measure performance parameters such as power, torque and SFC. The fuel mixture tested contained a mixture of E20 with the addition of Lemongrass Oil with variations of 0.68 x 10^-6; 1.35x10^-6; and 2.03 x 10^-6 mol. and addition of 0.026; 0.13; and 0.65 mol. The test results show that the highest power value at RPM 8000 is found in the E20 + TBA 1 mixture of 6.08 kW, which has a percentage increase of 4.06% compared to pertalite fuel. The highest torque value for each mixture is at low RPM, namely RPM 4000 to 5000, with the largest torque value found in the E20 + LGO 1 mixture at 8.73 Nm. The lowest SFC value was produced in the E20 + LGO 1 mixture with a value of 325.17 gr/kWh at RPM 4000 and the lowest SFC at RPM 8000 was found in the E20 + TBA 3 fuel mixture, namely 407.64 gr/kWh. The highest thermal efficiency value is found in the E20 + LGO 1 mixture with a value of 27.076%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5   >>