Tugas akhir ini merupakan lanjutan dari penelitian sebelumnya (Sanabila, 2008) dalam pengenalan sudut wajah dengan konsep yang sama, yaitu data acuan awal memiliki interval tertentu, dibuat data acuan baru menggunakan interpolasi, lalu data uji dihitung jaraknya terhadap semua data acuan, data acuan dengan jarak terdekat merupakan hasil tebakan. Perbedaan dalam penelitian ini adalah penggunaan data rata-rata dan data fuzzy sebagai data acuan, perbedaan dalam PCA yang dilakukan, serta penggunaan control point placement dalam interpolasi Bezier kuadratik. Skema eksperimen dibagi menjadi dua, menggunakan set data yang sama dengan penelitian sebelum ini dan menggunakan set data yang lebih kecil intervalnya. Selain itu, penelitian ini juga mencakup pengenaan distorsi. Kesimpulan dari peneltian ini adalah penggunaan data rata-rata lebih baik daripada data masing-masing foto yang harus dipisahkan berdasarkan kelas wajah terlebih dahulu, penggunaan PCA memberi hasil yang baik, algoritma dengan data fuzzy belum memberi hasil sebaik data rata-rata, pengenaan distorsi kurang mempengaruhi hasil pengenalan algoritma untuk eksperimen yang memakai data rata-rata, dan pemakaian control point placement menghasilkan tingkat pengenalan yang lebih baik untuk eksperimen dengan data rata-rata. This final project is a continuity of previous research about angle estimation with the same main concept: with reference data in some intervals, new reference data with smaller intervals was made with the use of interpolation, and distances between testing data and all reference data was calculated, the reference data with the closest distance was the algorithm?s estimation (Sanabila, 2008). Differences made were the use of average data (crisp data) and fuzzy data for each angle as reference data, differences in PCA algorithm, and the use of control point placement in quadratic bezier interpolation. Experiment scenarios were divided into two main schemes based on the intervals of the data set, the first one was an experiment scheme with the same data set intervals with previous research and another one was experiment scheme with smaller intervals. Data manipulation with noise addition have also been done in some experiment schemes. Some of the Conclusions were: use of average data was more efficient than one data for each picture, the use of PCA gave better result than experiments without PCA, experiments with average data gave better result than with fuzzy data, noise addition to data did not effect the recognition rate of the algorithm for experiments with average data (crisp), control point placement gave better result in experiments with average data. |