Seiring perkembangan teknologi, pemanfaatan dari pengembangan ilmu pengetahuan tersebut harus selalu ditingkatkan. Khususnya dalam hal menciptakan keamanan dan ketertiban di Indonesia. Sementara jumlah proporsi polisi dan warga yang tidak ideal, 1:900, Kepolisian Republik Indonesia masih menggunakan cara manual yang tidak efektif dalam mengidentifikasi pelaku kejahatan. Yaitu membuat sketsa wajah pelaku kejahatan dan mencari kemiripan wajah dengan citra-citra wajah yang ada di basis data Kepolisian. Sistem Identifikasi Buron bagian Alis dibuat untuk memperbaiki ketidakefektifan proses tersebut. Sistem Identifikasi Buron bagian Alis merupakan sub-bagian dari sistem Identifikasi Buron yang menggunakan bagian-bagian wajah lainnya untuk proses identifikasi. Untuk mencari yang paling efektif dalam mengukur kemiripan alis, maka penelitian ini membandingkan dua metode yang diganakan untuk melakukan ekstraksi. Yaitu Eigenface dan Klustering K-Means dengan Koreksi Gamma. Selain itu, penelitian ini juga membagi alis menjadi lima kategori, tebal, tipis, sambung, normal, dan sedang. Citra wajah yang digunakan berasal dari citra mahasiswa Universitas Indonesia (UI) angkatan 2007 sebanyak 500 buah. Citra alis diperoleh dari data wajah tersebut yang di crop secara manual. Keseluruhan data ini diperoleh dari Pusat Pengembangan Sistem Informasi (PPSI) UI. Setiap metode akan diuji dengan memberikan lima template dari lima kategori yang berbeda untuk diuji kemiripannya. Dari penelitian ini dihasilkan bahwa Eigenface memiliki akurasi sebesar 64.64%, sedangkan Klustering K-Means dengan Koreksi Gamma memiliki akurasi sebesar 74.75%. Diharapkan hasil penelitian ini bisa membantu kepolisian dalam menjaga keamanan dan ketertiban di Indonesia. |