Tujuan Tugas Akhir ini adalah mengimplementasikan algoritma clustering (sebagai bagian dari Data Mining Algorithms Collection) menggunakan bahasa pemrograman C++. Ada 2 algoritma clustering yang diimplementasikan yaitu Cobweb dan Iterate. Uji coba dilakukan dengan membandingkan kecepatan eksekusi dari implementasi Cobweb dengan Cobweb pada WEKA dan implementasi Iterate, serta membandingkan kualitas partisi implementasi Cobweb dengan Cobweb pada WEKA dan implementasi Iterate. Ada 2 jenis data uji coba yaitu dataset kecil dan dataset besar. Hasil uji coba menunjukan algoritma Cobweb pada WEKA bukan algoritma Cobweb murni, waktu eksekusi Cobweb implementasi lebih cepat dari WEKA namun lebih lambat dari Iterate implementasi, urutan data berpengaruh terhadap hasil Cobweb, dan kualitas Iterate lebih baik dari Cobweb. Kata kunci: clustering, Cobweb, data mining, dataset, Iterate.The purpose of this mini thesis is to implement clustering algorithms (as part of Data Mining Algorithms Collection) using C++. There are two clustering algorithms that are implemented, that are Cobweb and Iterate. The experiment is done by comparing the execution speed of Cobweb implementation with Cobweb in WEKA and Iterate implementation, also comparing the partition quality of Cobweb implementation with Cobweb in WEKA and Iterate implementation. There are two kinds of experiment data, which are small dataset and large dataset. The test results show that Cobweb algorithm in WEKA is not pure Cobweb algorithm, the execution time of Cobweb implementation is faster than WEKA but slower than Iterate implemetation, the data sorted affected to the Cobweb result and the quality of Iterate is better than Cobweb. |