:: UI - Skripsi Open :: Kembali

UI - Skripsi Open :: Kembali

Rancang bangun pengenalan penyakit darah menggunakan Hidden Markov model

Afita Putri Lestari; Dodi Sudiana, supervisor (Fakultas Teknik Universitas Indonesia, 2008)

 Abstrak

Darah merupakan unsur dalam tubuh manusia yang memiliki peran penting dalam mekanisme kerja tubuh. Banyak informasi penting yang terkandung dalam darah, termasuk informasi penyakit yang diderita seseorang. Pentingnya informasi tersebut ditambah kebutuhan diagnosis dini untuk mempercepat penanganan suatu penyakit, maka citra darah sangat vital sebagai media dalam proses pengenalan penyakit. Dengan menggunakan citra darah, proses pengenalan penyakit menjadi lebih mudah dan cepat karena tidak diperlukan proses reaksi kimia dengan darah.
Dalam skripsi ini dilakukan perancangan proses pengenalan penyakit leukemia dari citra darah dengan menggunakan metode Hidden Markov Model (HMM). Prosesnya melibatkan dua tahap proses utama yaitu proses pembentukan database dan proses pengenalan. Pada tahap pembentukan database, citra darah diubah menjadi vector sebagai titik sample dan titik-titik yang terdekat akan dikuantisasi menjadi centroid atau codeword. Kumpulan codeword akan disimpan berupa codebook di dalam database. Pengenalan dilakukan dengan membandingkan besaran log of probability HMM yang dihitung berdasarkan titik sample dari setiap sample citra darah. Dengan menggunakan codebook berukuran 32, 64 dan 128 dengan jumlah repetisi 5 dan 10 kali, diperoleh tingkat akurasi pengenalan penyakit darah antara 60% sampai 82,76%.

Blood is a part of human body which plays an important role in the body mechanism. Important informations could be achieved from blood, including information of diseases. This kind of information is very essential in order to diagnose the disease as early as possible. Blood cells in digital format will be easier to analyze using computers and the process itself could be performed faster than conventional methods, since it needs no chemical reactions in the process.
In this research, the disease identification for leukemia is performed from blood imageries analyzed using Hidden Markov Model (HMM). The whole process consists of two main processes: database construction and recognition. In the first process, blood image will be transformed to vectors as sample points and the nearest points will be quantized as centroids or codewords. The collection of codewords is built in codebook database. Recognition process is performed by taking the largest value of HMM?s log of probability from sample points of several blood images. Based on the simulation results, using codebook 32, 64 and 128 with repetition 5 and 10 times, the accuration levels of the recognition results are between 60% and 82.76%.

 File Digital: 1

Shelf

 Metadata

No. Panggil : S40544
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2008
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xii, 54 pages : illustration ; 30 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S40544 14-17-727573850 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 124282