:: UI - Skripsi Open :: Kembali

UI - Skripsi Open :: Kembali

Identifikasi retina mata manusia menggunakan sistem inferensi neuro fuzzy adaptif = Human retina identification using adaptive neuro fuzzy inference system

Nurul Hikmah; Dodi Sudiana, supervisor ([Publisher not identified] , 2008)

 Abstrak

Identifikasi retina merupakan metode identifikasi biometrik dengan tingkat kesalahan rendah melalui pola-pola unik pembuluh darah di bagian belakang retina. Pola-pola ini dapat digunakan sebagai data latih logika neuro fuzzy untuk kemudian digunakan sebagai pembanding pada saat identifikasi dilakukan.
Penelitian ini bertujuan untuk mengenali citra retina mata manusia, baik bagian kiri maupun kanan, menggunakan teknik pengolahan citra dan Adaptive Neuro Fuzzy Inference System (ANFIS). Pada proses pengenalan retina ini, citra digital yang sudah diakuisisi akan dicrop dan dibagi menjadi image block berukuran 4x4. Kemudian blok citra dikonversi dari format Red Green Blue (RGB) menjadi format Hue Saturation Value (HSV). Untuk mendapatkan parameter fitur warna HSV, setiap komponen warna HSV dihitung nilai rata-ratanya. Nilai rata-rata HSV dimasukkan ke dalam database dan dilatih dengan ANFIS yang terdiri atas 2 jenis membership function, yaitu Gaussian dan Trapesium dengan 3 input dan 1 ouput.
Dari hasil uji coba, hasil identifikasi memiliki tingkat akurasi hingga 65% untuk membership function Trapesium dan 80% untuk membership function Gaussian dengan 60 kali pelatihan ANFIS.

Retina identification is a biometric identification method which has very low error rate using a unique blood vessel pattern in the back of the retina. The identification involved an infrared scanned retina imagery which is analyzed using image processing technique to derive the color characteristics and then trained into the Adaptive Neuro Fuzzy Inference System (ANFIS).
The objective of this research to identify a person?s identity from his/her retina image. The identification process is started by cropping the digital retina image then transformed into an 4x4 image block. The image block is then converted from Red Green Blue (RGB) color format to the Hue Saturation Value (HSV) format. Each color component of HSV values is then averaged, saved to a database and trained using ANFIS. The Neuro fuzzy used Gaussian and Trapezoid membership function which have 3 input and 1 ouput, respectively.
The simulation results showed the identification system has an accuracy rate up to 65% and up to 80%, for Trapezoid and Gaussian membership function, respectively. This results are achieved using 60 training data in the ANFIS.

 File Digital: 1

Shelf

 Metadata

No. Panggil : S40478
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2008
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiv, 57 pages : illustration ; 30 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S40478 14-17-013248184 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 124285