Full Description

Cataloguing Source
Content Type
Media Type
Carrier Type
Physical Description x, tidak beraturan : il. ; 29 cm.
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan Universitas Indonesia
 
  •  Availability
  •  Digital Files: 9
  •  Review
  •  Cover
  •  Abstract
Call Number Barcode Number Availability
S-Pdf 14-21-071281375 TERSEDIA
No review available for this collection: 124824
 Abstract
Penelitian ini adalah kelanjutan dari penelitian-penelitian sebelumnya mengenai pengenalan wajah dan penentuan sudut pandang wajah 3D dengan metode Nearest Feature Line (NFL) dan optimasi ruang ciri lewat Algoritme Genetika (GA). Umumnya, ruang ciri dibentuk berdasarkan vektor-vektor eigen dengan nilai-nilai eigen terbesar. Fokus utama penelitian ini terletak pada pengkombinasian vektor eigen (bukan hanya yang terbesar) dalam membangun ruang ciri. Untuk menganalisis seberapa baik ruang ciri yang dibentuk lewat cara tersebut, dilakukan beberapa eksperimen pengenalan wajah dan penentuan sudut pandang wajah 3D pada tiga skema-sistem: Fully-KLT, Subset-1-KLT dan Subset-2-KLT. Tingkat pengenalan yang diperoleh mencapai 91,7% untuk pengenalan wajah pada skema Fully-KLT dan Subset-2-KLT, dan mencapai 87,5% untuk penentuan sudut pandang wajah pada skema Fully-KLT. Berdasarkan hasil eksperimen, diperoleh kesimpulan bahwa ruang ciri dengan kombinasi vektor eigen dapat lebih optimal dalam hal representasi data spasial. Namun, ruang ciri yang tersusun atas vektor-vektor eigen terbesar unggul dalam hal perbandingan antara tingkat pengenalan yang diberikan dengan pengurangan lebar dimensi.