Full Description

Cataloguing Source
Content Type
Media Type
Carrier Type
Physical Description v, 109 lembar; il; 29 cm.
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan Universitas Indonesia
 
  •  Availability
  •  Digital Files: 8
  •  Review
  •  Cover
  •  Abstract
Call Number Barcode Number Availability
S-Pdf 14-21-524388444 TERSEDIA
No review available for this collection: 125261
 Abstract
Tugas akhir ini memfokuskan penyelesaian relasi implicit yang berhubungan dengan metode implicit Runge-Kutta (IRK) untuk menyelesaikan Stiff Initial Value Problems (Stiff IVPs). Pendekatan konvensional untuk penyelesaian RK equation (persamaan RK) menggunakan iterasi Newton dengan full righthand side jacobian. Untuk IVP dengan dimensi yang besar, pendekatan ini kurang menarik karena memerlukan biaya yang tinggi dalam LU-decomposition terhadap jacobian dari RK equation. Untuk mengurangi biaya yang tinggi, salah satu penyelesaiannya yaitu dengan menggunakan similarity transformation, dimana RK jacobian ditransformasikan ke dalam sebuah matrix block-diagonal. Pada tugas akhir ini, akan dipelajari pendekatan alternatif dengan mengganti langsung RK jacobian dengan matrix block-diagonal atau block-triangular dimana tiap block itu sendiri adalah matrix block-triangular. Pada [15] telah dibahas bahwa pendekatan block-triangular ini konvergen dan telah dilihat efek konvergensi dari aproksimasi block-triangular jacobian. Tujuan utama dari tugas akhir ini adalah untuk mengimplementasikan metode iterasi Runge-Kutta dengan block triangular jacobian. Hal ini dilanjutkan dengan mencoba test dengan beberapa permasalahan. Implementasi metode iterasi Runge-Kutta dengan block-triangular jacobian ini akan dilakukan dengan fixed stepsize dan variable stepsize. Dan akan dilakukan analisa terhadap keduanya, baik dari segi keakuratan maupun biaya yang diperlukan. Dari hasil percobaan kedua metode, didapat bahwa untuk persoalan yang berdimensi besar, triangular jacobian akan mulai terlihat lebih efisien dibandingkan dengan full jacobian dengan tingkat akurasi yang tidak jauh berbeda.