:: UI - Skripsi Open :: Kembali

UI - Skripsi Open :: Kembali

Perancangan algoritma ant colony optimization (aco) untuk penyelesaian vehicle routing problem (vrp)

Paulus Bangun Martua; Armand Omar Moeis, supervisor ([Publisher not identified] , 2011)

 Abstrak

Ant Colony Optimization (ACO) adalah salah satu algoritma approximate untuk penyelesaian permasalahan NP-hard dan salah satu metode state-of-the-art dalam penyelesaian masalah diskrit. Vehicle Routing Problem (VRP), salah satu permasalahan diskrit, dalam penelitian ini akan diselesaikan menggunakan algoritma ACO. Permasalahan VRP yang akan diselesaikan adalah 6 hasil penelitian mahasiswa Departemen Teknik Industri Universitas Indonesia. Hasil dari penyelesaian VRP menggunakan ACO menunjukkan bahwa fungsi tujuan jarak dari solusi dengan algoritma ACO lebih baik dari pendekatan yang digunakan pada penelitian sebelumnya.

Ant Colony Optimization (ACO) is one of approximate algorithm for solving NP-hard problem and state-of-the-art method for solving discrete problem. Vehicle Routing Problem (VRP), one of discrete problem, in this research will be solved using ACO algorithm. VRP problem that will be solved are the result of 6 student research that held by Industrial Engineering and Department, University of Indonesia. The result of solving VRP using ACO show that objective function of solution distance with ACO algorithm is better than previous approach in those research.

 File Digital: 1

 Metadata

No. Panggil : S53
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2011
Program Studi :
Bahasa : ind
Sumber Pengatalogan :
Tipe Konten :
Tipe Media :
Tipe Carrier :
Deskripsi Fisik : xiv, 109 hlm.; ill.; 30 cm.
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S53 14-17-678830863 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20169884