:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Aproksimasi solusi persamaan diferensial stokastik jump-diffusion menggunakan metode euler-maruyama.

(Universitas Indonesia, 2006)

 Abstrak

Model Persamaan Differensial Stokastik (PDS) Jump-Diffusion mempunyai kemampuan untuk merepresentasikan faktor ketidakpastian dalam perubahan nilai, terutama untuk perubahan drastis. Permasalahan utama dalam model-model PDS tersebut adalah sulitnya untuk menyelesaikan suatu PDS secara eksplisit (eksak). Sehingga digunakan metode numerik sebagai alternatif penyelesaian masalah. Dalam skripsi ini akan dilakukan pembahasan tentang metode Euler-Maruyama, yang digunakan untuk mengaproksimasi solusi dari suatu model PDS Jump-Diffusion. Model yang digunakan terdiri dari PDS dengan satu persamaan dan PDS dengan banyak persamaan (Sistem PDS). Sebagai pelengkap, juga dibangun suatu aplikasi berbasis web dengan menggunakan bahasa pemrograman JAVA dan PHP.

 File Digital: 1

Shelf
 029-06-Aproksimasi solusi.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S27662
Subjek :
Penerbitan : [Place of publication not identified]: Universitas Indonesia, 2006
Program Studi :
Bahasa : ind
Sumber Pengatalogan :
Tipe Konten :
Tipe Media :
Tipe Carrier :
Deskripsi Fisik : ix, 45 hlm. ; 30 cm. + Lamp.
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S27662 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20180889