Misalkan G = (V,E) adalah graf sederhana dengan v simpul dan e busur. Pelabelan total busur ajaib pada graf G adalah pemetaan bijektif f dari VUE ke himpunan bilangan bulat positif berurutan { 1,2,3, ..., v+e } sehingga bobot semua busur adalah konstan. Pelabelan total busur ajaib dengan f (E) = { b+1,b+2,b+3, ..., b+e },0 <_ b <_ v disebut pelabelan total busur-ajaib b-busur berurutan. Jika suatu graf memiliki pelabelan total busur-ajaib b-busur berurutan maka banyak maksimum busur pada G adalah v - 1 atau dengan kata lain e <_ v - 1. Suatu graf dengan e > v - 1 masih bisa dilabel dengan pelabelan total busur-ajaib b-busur berurutan dengan menambahkan sejumlah simpul terisolasi sehingga memenuhi e <_ v - 1. Pada makalah ini akan dikonstruksi pelabelan total busur-ajaib b-busur berurutan untuk graf kecebong dan graf dumbbell dengan menambahkan simpul-simpul terisolasi sehingga memenuhi e <_ v - 1. Let G = (V,E) be a simple graph with v vertices and e edges. An edge magic total labeling of a graph G is a bijection f from VUE onto the set of consecutive positive integers { 1,2,3, ..., v+e } so that the weight of all edges are constant. An edge magic total labeling with f (E) = { b+1,b+2,b+3, ..., b+e } 0 <_ b <_ v is called b-edge consecutive edge magic total labeling. If a graph has a b-edge consecutive edge magic total labeling, then the maximum number of edges in G is v - 1 or e <_ v - 1. A graph with e > v - 1 can be labeled with b-edge consecutive edge magic total labeling by adding some isolated vertices to G in order to satisfy e <_ v - 1. In this skripsi we give the construction of a b-edge consecutive edge magic total labeling on tadpole graphs and dumbbell graphs by adding some isolated vertices to satisfy e <_ v - 1. |