Pengenalan tulisan tangan berbasiskan ciri dengan jaringan saraf buatan
(Fakultas Teknik Universitas Indonesia, 1997)
|
Dalam skripsi ini dikembangkan suatu sistem analitis of}-line untuk mengenali tulisan tangan diskrit dengan menggunakanjaringan saraf buatan sebagai pengklasiftkasi. Pendekatan yang diambil adalah dengan melakukan pra-pengolahan terlebih dahuiu terhadap citra masukan, dan mengekstraksi beberapa ciri sebelum dimasukkan ke dalam jaringan saraf. Ciri yang digunakan tidak terlalu banyak yaitu 72 buah, dan diambil dari berbagai jenis kategori yaitu ciri global, lokal, tipografis, dan topologis. Jaringan saraf buatan yang digunakan dalam skripsi ini ada tiga buah yaitu jaringan huruf kecil, jaringan huruf besar, dan jaringan ACON (All Class in One Network) yang merupakan sebuah jaringan tunggal yang menangani semua kelas keluaran baik huruf besar maupun huruf kecil. Setiap node pada ketiga jaringan tersebut menggunakan fungsi aktivasi sigmoid dengan jangkauan keluaran [45, 0.5]. Pelatihan dilakukan dengan algoritma propagasi balik online (online backpropagation) untuk meminimumkan fungsi kesalahan cross-entropy. Dalam skripsi ini akan dibandingkan kemampuan generalisasi antara jaringan ACON dengan jaringan subclass yang terbentuk dari jaringan huruf besar dan jaringan huruf kecil. Pengujian juga dilakukan untuk melihat kemampuan sistem untuk mengenali citra masukan yang telah transformasi skala. |
S38946-Stephen Winata.pdf :: Unduh
|
No. Panggil : | S38946 |
Subjek : | |
Penerbitan : | [Place of publication not identified]: Fakultas Teknik Universitas Indonesia, 1997 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | |
Tipe Konten : | |
Tipe Media : | |
Tipe Carrier : | |
Deskripsi Fisik : | xii, 52 hlm. : ill. ; 28 cm + lamp. |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI, Lantai 3 |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S38946 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20243627 |