Tsunami adalah disebabkan oleh getaran gelombang gempa yang melebihi parameter tertentu. Skripsi ini membahas tentang perancangan sistem pengenalan gelombang gempa dengan menggunakan metode Jaringan Syaraf Tiruan. Jaringan Syaraf Tiruan (JST) adalah suatu metode komputasi untuk memodelkan suatu sistem. Bentuk dan sifat JST yang sangat flexible memungkinkan JST digunakan untuk memodelkan, merancang dan menganalisa pengenalan gelombang gempa. Metode yang digunakan adalah backpropagation yang terdiri atas lapisan masukan, lapisan tersembunyi dan lapisan keluaran. Pada penelitian ini analisa yang dilakukan adalah training data dengan fungsi gradient (traingd) serta menggunakan fungsi aktivasi purelin. Tsunamis are seismic waves caused by vibrations that exceed certain parameters. This thesis discusses the design of seismic wave recognition system using neural networks. Artificial Neural Network (ANN) is a computational method for modeling a system. The form and nature of the ANN, which is very flexible allowing ANN used for modeling, designing and analyzing the introduction of seismic waves. The method used is backpropagation which consists of an input layer, hidden layer and output layer. In this research, analysis, training data is a function of gradient (traingd) and using the activation function purelin. |