Full Description
Cataloguing Source | LibUI ind rda |
Content Type | text (rdacontent) |
Media Type | unmediated (rdamedia) ; computer (rdamedia) |
Carrier Type | volume (rdacarrier) ; online resource (rdacarrier) |
Physical Description | xi, 68 pages : illustration ; 28 cm |
Concise Text | |
Holding Institution | Universitas Indonesia |
Location | Perpustakaan UI, Lantai 3 |
- Availability
- Digital Files: 1
- Review
- Cover
- Abstract
Call Number | Barcode Number | Availability |
---|---|---|
T32964 | TERSEDIA |
No review available for this collection: 20330082 |
Abstract
ABSTRAK
Misalkan G-(p,q) adalah sebuah graf dengan p=│V(G)│ dan q=│E(G)│. Graf G disebut harmonis jika terdapat suatu pemetaan injektif f:V(G)→ Zq sedemikian hingga menginduksi pemetaan bijektif f*:E(G)→ Zq dengan f*( uv)=f(u)+f(v) (mod q). Fungsi disebut fungsi pelabelan harmonis dari graf . Graf disebut harmonis ganjil jika terdapat suatu pemetaan injektif f:V(G)→ {0, 1, 2, ?, 2q-1} sedemikian hingga menginduksi pemetaan bijektif f*:E(G)→ {1, 3, 5, ?, 2q-1} dengan f*(uv)=f(u)+f(v). Fungsi f disebut fungsi pelabelan harmonis ganjil dari graf G. Pada tesis ini diberikan konstruksi dan pelabelan harmonis ganjil pada graf korona, graf matahari, graf hairy cycle HC(n; ri), graf shadow lingkaran D2(Cn) dan graf generalisasi shadow lingkaran Dm(Cn) untuk n = 0 (mod 4) .
ABSTRACT
Let G-(p,q) is a graph with p=│V(G)│and q=│E(G)│ . A graph G is said to be harmonious if there exist an injection f:V(G)→ Zq , such that the induced function f*:E(G)→ Zq defined by f*( uv)=f(u)+f(v) (mod q) is an bijection. A function f is said to be the harmonious labeling of G. A graph G is said to be odd harmonious if there exist an injection f:V(G)→ {0, 1, 2, ?, 2q-1} such that the induced function f*:E(G)→ {1, 3, 5, ?, 2q-1} defined by f*(uv)=f(u)+f(v) is an bijection. A function is said odd harmonious labeling of . In this thesis is given the proof that corona, sun graph, hairy cycle HC(n; ri), cycle shadow D2(Cn) and generalized of cycle shadow Dm(Cn) for are odd harmonious graphs.
Misalkan G-(p,q) adalah sebuah graf dengan p=│V(G)│ dan q=│E(G)│. Graf G disebut harmonis jika terdapat suatu pemetaan injektif f:V(G)→ Zq sedemikian hingga menginduksi pemetaan bijektif f*:E(G)→ Zq dengan f*( uv)=f(u)+f(v) (mod q). Fungsi disebut fungsi pelabelan harmonis dari graf . Graf disebut harmonis ganjil jika terdapat suatu pemetaan injektif f:V(G)→ {0, 1, 2, ?, 2q-1} sedemikian hingga menginduksi pemetaan bijektif f*:E(G)→ {1, 3, 5, ?, 2q-1} dengan f*(uv)=f(u)+f(v). Fungsi f disebut fungsi pelabelan harmonis ganjil dari graf G. Pada tesis ini diberikan konstruksi dan pelabelan harmonis ganjil pada graf korona, graf matahari, graf hairy cycle HC(n; ri), graf shadow lingkaran D2(Cn) dan graf generalisasi shadow lingkaran Dm(Cn) untuk n = 0 (mod 4) .
ABSTRACT
Let G-(p,q) is a graph with p=│V(G)│and q=│E(G)│ . A graph G is said to be harmonious if there exist an injection f:V(G)→ Zq , such that the induced function f*:E(G)→ Zq defined by f*( uv)=f(u)+f(v) (mod q) is an bijection. A function f is said to be the harmonious labeling of G. A graph G is said to be odd harmonious if there exist an injection f:V(G)→ {0, 1, 2, ?, 2q-1} such that the induced function f*:E(G)→ {1, 3, 5, ?, 2q-1} defined by f*(uv)=f(u)+f(v) is an bijection. A function is said odd harmonious labeling of . In this thesis is given the proof that corona, sun graph, hairy cycle HC(n; ri), cycle shadow D2(Cn) and generalized of cycle shadow Dm(Cn) for are odd harmonious graphs.