Tugas akhir ini secara umum bertujuan untuk membahas latent class model yaitu suatu model yang menghubungkan probabilitas respon suatu individu untuk variabel-variabel indikator dengan suatu variabel laten yang bersifat kategorik. Penaksiran parameter dalam latent class model menggunakan taksiran Maximum Likelihood, yang dicari melalui algoritma EM (Expectation-Maximization). Kecocokan model diuji dengan uji rasio likelihood. Model terbaik dengan banyak kelas optimal dipilih berdasarkan reduksi L2 , dimana L2 adalah nilai statistik uji untuk banyak kelas terkait. Berdasarkan banyak kelas yang terbentuk pada model terbaik ini, individu-individu akan dikelompokkan ke dalam kelas-kelas tersebut. Metode tersebut akan diterapkan untuk mencari latent class model dengan tingkatan gejala pasien demam berdarah sebagai variabel laten kategorik yang dibentuk dari 5 variabel indikator kategorik, yaitu transfusi, nadi, tekanan darah, hb darah, dan trombosit. Hasil analisis data menunjukkan bahwa tingkatan gejala demam berdarah dapat dikategorikan menjadi 3 kelas. |