:: UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Pengaruh panjang co-doped dan intrinsic region terhadap subthreshold swing (SS) pada divais lateral p-n dan p-i-n berskala nano = Impact of co-doped and intrinsic region length on subthreshold swing (SS) in si nanoscale lateral p-n and p-i-n devices

Khotimatul Fauziah; Arief Udhiarto, supervisor; Djoko Hartanto, examiner; Ratno Nuryadi, supervisor (Fakultas Teknik Universitas Indonesia, 2014)

 Abstrak

Tunnel Field Effect Transistor (TFET) merupakan struktur divais yang menggunakan mekanisme transport band-to-band tunneling untuk proses injeksi carrier. Hal ini berbeda dengan MOSFET yang menggunakan thermionic emission untuk mengalirkan arus. Dengan mekanisme transport yang berbeda ini,TFET dapat mencapai nilai subthreshold swing (SS) lebih rendah dari 60 mV/dec, lebih kecil dari transistor konvensional. Rendahnya nilai SS ini penting untuk penskalaan tegangan dengan arus switching yang ideal. Pada tesis ini dilakukan analisa karakteristik tunnel FET pada divais Si lateral p-n dan p-i-n berskala nanodari data hasil penelitian yang diperoleh Nano Device Laboratory, Research Institute of Electronics, Shizuoka University, Jepang. Fenomena band-to-band tunneling pada divais lateral p-n dan p-i-n berskala nano berhasil diobservasi. Band-to-band tunneling terjadi pada saat divais diberikan tegangan reverse bias dan gate diberikan tegangan positif. Dari hasil analisa pada struktur p-n dengan ketebalan oxide 150 nm, diperoleh SS mencapai 647,5 mV/dec. Dengan metode komparasi tegangan substrat pada ketebalan oxide 3 nm diperoleh SS sebesar 12,95 mV/dec, lebih kecil dari 60 mV/dec yang merupakan batasan nilai SS yang dapat dicapai pada MOSFET. Selanjutnya dilakukan analisa pengaruh co-doped dan intrinsic region terhadap tegangan threshold dan pengaruh panjangnya terhadap SS.
Diperoleh bahwa struktur p-n memiliki tegangan threshold lebih tinggi dibanding struktur p-i-n. Hal ini dipengaruhi oleh level Fermi pada channel region, di mana co-doped region memiliki level Fermi EF = 0,112 eV, lebih rendah dari i-region dengan EF = 0,56 eV, sehingga dibutuhkan tegangan gate yang lebih besar untuk menurunkan energi band channel sehingga terbentuk tunnel junction. Dengan mengubah panjang co-doped dan i-region diperoleh hasil bahwa pada struktur p-n dengan panjang co-doped 250 nm diperoleh SS sebesar 647,5 mV/dec, lebih kecil dari struktur dengan panjang co-doped 1000 nm dengan SS mencapai 724 mV/dec. Hal ini disebabkan pada struktur p-n, co-doped region yang lebih pendek akan membentuk channel region yang lebih sempit sehingga elektron pada channel akan lebih cepat tersapu menuju drain. Sebaliknya, pada struktur p-i-n dengan panjang i-region 2000 nm diperoleh SS 704 mV/dec, lebih kecil dari struktur dengan panjang i-region 1000 nm dengan SS mencapai 776 mV/dec. Hal ini dapat dijelaskan bahwa pada struktur p-i-n, semakin panjang i-region maka daerah deplesi pada channel semakin lebar sehingga tunnel region yang terbentuk akan lebih panjang dan probabilitas elektron yang dapat dilewatkan pada tunnel region semakin besar.

Tunnel Field Effect Transistor (TFET) is a device structure which use band to band tunneling transport for the carrier injection mechanism, unlike MOSFET which use thermionic emission. This transport mechanism enables TFET to reach sub threshold swing (SS) less than 60 mV/dec that can enable voltage scaling with ideal current switching. Analysis of the characteristic of tunnel FET on Si nanoscale lateral p-n and p-i-n devices will be conducted in this thesis based on the research data at Nano Device Laboratory, Research Institute of Electronics, Shizuoka University, Japan. Band to band tunneling phenomenon on the lateral nanoscale lateral p-n and p-i-n devices are successfully observed. Band to band tunneling occurs when the devices are in reverse biased condition and positive voltage is applied to the gate. For p-n device with the oxide thickness 150 nm, the SS reaches 647,5 mV/dec. Using substrate voltage comparison methods on the oxide layer with thickness of 3 nm, the SS value is 12,95-mV/dec, smaller than 60 mV/dec as a limitation of SS on MOSFET. Next, we analyze the effect of codoped and intrinsic region to the threshold voltage and its length to the subthreshold swing (SS).
We found that, p-n devices have higher threshold voltage compared to p-i-n devices. We ascribe that this results come from the fact that codoped region has lower Fermi level than that in i-region. By varying the intrinsic and the co-doped region length, we observed that p-n device with co-doped length 250 nm has SS 647,5 mV/dec, smaller than p-n device with co-doped length 1000 nm which has SS 724 mV/dec. We consider that when the co-doped region length is decreasing, the channel region will be shorter. Therefore the electron on the the conduction band of the channel will be swept out to the drain region quickly. We also found that, p-i-n device with i-region length 2000 nm has SS 704 mV/dec, smaller than p-i-n device with i-region length 1000 nm with SS 776 mV/dec. We ascribe that when the i-region length is increasing, the tunnel region in the channel region will be larger, such that the probabilities of electron to tunnel to the channel region increases.

 File Digital: 1

Shelf
 T38976-Khotimatul Fauziah.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : T38976
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2014
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : x, 39 pages ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
T38976 15-23-16585635 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20365053