Misalkan 𝐺(𝑝,𝑞) adalah suatu graf dengan 𝑝 simpul dan 𝑞 busur dengan himpunan simpul 𝑉dan himpunan busur 𝐸. Suatu graf 𝐺(𝑝,𝑞) dikatakan harmonis ganjil jika terdapat fungsi injektif 𝑓:𝑉(𝐺)→{0,1,2,…,2𝑞−1} sedemikian sehingga menginduksi pemetaan 𝑓∗(𝑢𝑣)=𝑓(𝑢)+𝑓(𝑣) yang merupakan fungsi bijektif 𝑓∗:𝐸(𝐺)→{1,3,5,…,2𝑞−1}. Graf yang memiliki pelabelan harmonis ganjil disebut graf harmonis ganjil. Pada skripsi ini diberikan konstruksi pelabelan harmonis ganjil pada graf gabungan korona isomorfis, 𝑚(𝐶𝑛⊚𝐾𝑟̅̅̅) untuk n≡0(mod 4). Lebih lanjut juga dibuktikan bahwa 𝑚(𝐶𝑛⊚𝐾𝑟̅̅̅) bukan graf harmonis ganjil jika 𝑛 ganjil. Let 𝐺(𝑝,𝑞) be a graph with 𝑝 vertices and 𝑞 edges with set of vertice 𝑉 and set of edge 𝐸. A graph G (p, q) is said to be odd harmonious if there exists an injection 𝑓:𝑉(𝐺)→{0,1,2,…,2𝑞−1}, such that induced mapping 𝑓∗(𝑢𝑣)=𝑓(𝑢)+𝑓(𝑣) is a bijection 𝑓∗:𝐸(𝐺)→{1,3,5,…,2𝑞−1}. A graph with odd harmonious labelling is called odd harmonious graph. In this skripsi, it will be given a construction of an odd harmonious labeling on the union of isomorphic corona graph, 𝑚(𝐶𝑛⊚𝐾𝑟̅̅̅) for n≡0(mod 4). Moreover, it is also proved that 𝑚(𝐶𝑛⊚𝐾𝑟̅̅̅) is not odd harmonious graph if 𝑛 is odd. |